Tibotec BVBA, Gen De Wittelaan L 11B 3, Mechelen, Belgium.
AIDS. 2010 Feb 20;24(4):503-14. doi: 10.1097/QAD.0b013e32833677ac.
To refine the genotypic and phenotypic correlates of response to the nonnucleoside reverse transcriptase inhibitor etravirine.
Initial analyses identified 13 etravirine resistance-associated mutations (RAMs) and clinical cutoffs (CCOs) for etravirine. A multivariate analysis was performed to refine the initial etravirine RAM list and improve the predictive value of genotypic resistance testing with regard to virologic response and relationship to phenotypic data.
Week 24 data were pooled from the phase III studies with TMC125 to Demonstrate Undetectable viral load in patients Experienced with ARV Therapy (DUET). The effect of baseline resistance to etravirine on virologic response (<50 HIV-1 RNA copies/ml) was studied in patients not using de-novo enfuvirtide and excluding discontinuations for reasons other than virologic failure (n = 406). Clinical cutoffs for etravirine were established by analysis of covariance models and sliding fold change in 50% effective concentration (EC50) windows (Antivirogram; Virco BVBA, Mechelen, Belgium). Etravirine RAMs were identified as those associated with decreased virologic response/increased etravirine fold change in EC50. Relative weight factors were assigned to the etravirine RAMs using random forest and linear modeling techniques.
Baseline etravirine fold change in EC50 predicted virologic response at week 24, with lower and preliminary upper clinical cutoffs of 3.0 and 13.0, respectively. A fold change in EC50 value above which etravirine provided little or no additional efficacy benefit could not be established. Seventeen etravirine RAMs were identified and attributed a relative weight factor accounting for the differential impact on etravirine fold change in EC50. Virologic response was a function of etravirine-weighted genotypic score.
The weighted genotypic scoring algorithm optimizes resistance interpretations for etravirine and guides treatment decisions regarding its use in treatment-experienced patients.
完善非核苷类逆转录酶抑制剂依曲韦林的基因型和表型相关性,以指导临床用药。
最初的分析确定了 13 种依曲韦林耐药相关突变(RAM)和依曲韦林的临床临界点(CCO)。通过多变量分析,对初始依曲韦林 RAM 列表进行了优化,并提高了基因型耐药测试对病毒学反应和与表型数据关系的预测价值。
从 TMC125 治疗的 III 期 DUET 研究中汇集了第 24 周的数据。在未使用新引入的恩夫韦肽和排除除病毒学失败以外的停药原因的患者中(n=406),研究了基线对依曲韦林的耐药性对病毒学反应(<50 HIV-1 RNA 拷贝/ml)的影响。采用协方差分析模型和滑动 50%有效浓度(EC50)窗口的折叠变化(Antivirogram;Virco BVBA,Mechelen,比利时)建立依曲韦林的临床临界点。将与病毒学反应降低/依曲韦林 EC50 折叠增加相关的突变确定为依曲韦林 RAM。使用随机森林和线性建模技术为依曲韦林 RAM 分配相对权重因子。
基线依曲韦林 EC50 折叠预测第 24 周的病毒学反应,分别为较低和初步的上限临床临界点 3.0 和 13.0。无法确定依曲韦林 EC50 值的折叠变化,超过该值依曲韦林提供的疗效益处很少或没有。确定了 17 种依曲韦林 RAM,并为其分配了一个相对权重因子,以反映其对依曲韦林 EC50 折叠变化的影响差异。病毒学反应是依曲韦林加权基因型评分的函数。
加权基因型评分算法优化了依曲韦林的耐药解释,并指导了治疗经验丰富患者使用依曲韦林的治疗决策。