McCutcheon Murray W, Chang Darrick E, Zhang Yinan, Lukin Mikhail D, Loncar Marko
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
Opt Express. 2009 Dec 7;17(25):22689-703. doi: 10.1364/OE.17.022689.
Much recent effort has focused on coupling individual quantum emitters to optical microcavities in order to produce single photons on demand, enable single-photon optical switching, and implement functional nodes of a quantum network. Techniques to control the bandwidth and frequency of the outgoing single photons are of practical importance, allowing direct emission into telecommunications wavelengths and "hybrid" quantum networks incorporating different emitters. Here, we describe an integrated approach involving a quantum emitter coupled to a nonlinear optical resonator, in which the emission wavelength and pulse shape are controlled using the intra-cavity nonlinearity. Our scheme is general in nature, and demonstrates how the photonic environment of a quantum emitter can be tailored to determine the emission properties. As specific examples, we discuss a high Q-factor, TE-TM double-mode photonic crystal cavity design that allows for direct generation of single photons at telecom wavelengths (1425 nm) starting from an InAs/GaAs quantum dot with a 950 nm transition wavelength, and a scheme for direct optical coupling between such a quantum dot and a diamond nitrogen-vacancy center at 637 nm.
最近,许多工作都集中在将单个量子发射器与光学微腔耦合,以便按需产生单光子、实现单光子光开关以及实现量子网络的功能节点。控制出射单光子的带宽和频率的技术具有实际重要性,这使得能够直接发射到电信波长以及包含不同发射器的“混合”量子网络中。在这里,我们描述了一种集成方法,该方法涉及将量子发射器耦合到非线性光学谐振器,其中利用腔内非线性来控制发射波长和脉冲形状。我们的方案本质上具有通用性,并展示了如何定制量子发射器的光子环境以确定发射特性。作为具体示例,我们讨论了一种高Q因子的TE - TM双模光子晶体腔设计,该设计允许从具有950 nm跃迁波长的InAs / GaAs量子点直接产生电信波长(1425 nm)的单光子,以及一种在这样的量子点与637 nm的金刚石氮空位中心之间进行直接光耦合的方案。