Suppr超能文献

使用夏克-哈特曼波前传感器测量视网膜反射的方向性。

Measuring directionality of the retinal reflection with a Shack-Hartmann wavefront sensor.

作者信息

Gao Weihua, Jonnal Ravi S, Cense Barry, Kocaoglu Omer P, Wang Qiang, Miller Donald T

机构信息

School of Optometry, Indiana University, Bloomington, Indiana 47405,

出版信息

Opt Express. 2009 Dec 7;17(25):23085-97. doi: 10.1364/OE.17.023085.

Abstract

The directional sensitivity of the retina, known as the Stiles-Crawford effect (SCE), originates from the waveguide property of photoreceptors. This effect has been extensively studied in normal and pathologic eyes using highly customized optical instrumentation. Here we investigate a new approach based on a Shack-Hartmann wavefront sensor (SHWS), a technology that has been traditionally employed for measuring wave aberrations (phase) of the eye and is available in clinics. Using a modified research-grade SHWS, we demonstrate in five healthy subjects and at four retinal eccentricities that intensity information can be readily extracted from the SHWS measurement and the spatial distribution of which is consistent with that produced by the optical SCE. The technique is found sufficiently sensitive even at near-infrared wavelengths where the optical SCE is faint. We demonstrate that the optical SCE signal is confined to the core of the SHWS spots with the tails being diffuse and non-directional, suggesting cones fail to recapture light that is multiply scattered in the retina. The high sensitivity of the SHWS to the optical SCE raises concern as to how this effect, intrinsic to the retina, may impact the SHWS measurement of ocular aberrations.

摘要

视网膜的方向敏感性,即斯泰尔斯-克劳福德效应(SCE),源于光感受器的波导特性。利用高度定制的光学仪器,这种效应已在正常和病理眼睛中得到广泛研究。在此,我们研究了一种基于夏克-哈特曼波前传感器(SHWS)的新方法,该技术传统上用于测量眼睛的波像差(相位),且在临床上可用。使用经过改进的研究级SHWS,我们在五名健康受试者中以及在四个视网膜偏心度下证明,强度信息可以很容易地从SHWS测量中提取出来,其空间分布与光学SCE产生的分布一致。即使在光学SCE微弱的近红外波长下,该技术也被发现具有足够的灵敏度。我们证明,光学SCE信号局限于SHWS光斑的核心,其尾部是弥散的且无方向性,这表明视锥细胞无法捕获在视网膜中多次散射的光。SHWS对光学SCE的高灵敏度引发了人们对这种视网膜固有效应如何影响SHWS对眼像差测量的担忧。

相似文献

1
Measuring directionality of the retinal reflection with a Shack-Hartmann wavefront sensor.
Opt Express. 2009 Dec 7;17(25):23085-97. doi: 10.1364/OE.17.023085.
3
4
Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes.
J Biomed Opt. 2006 May-Jun;11(3):30502. doi: 10.1117/1.2197860.
6
Comparison of optical vortex detection methods for use with a Shack-Hartmann wavefront sensor.
Opt Express. 2012 Feb 27;20(5):4988-5002. doi: 10.1364/OE.20.004988.
7
Problems testing diffractive intraocular lenses with Shack-Hartmann sensors.
Appl Opt. 2010 Jun 1;49(16):D62-8. doi: 10.1364/AO.49.000D62.
8
Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument.
Invest Ophthalmol Vis Sci. 2006 Apr;47(4):1710-6. doi: 10.1167/iovs.05-1049.
9
Multi-layer Shack-Hartmann wavefront sensing in the point source regime.
Biomed Opt Express. 2020 Dec 16;12(1):409-432. doi: 10.1364/BOE.411189. eCollection 2021 Jan 1.

引用本文的文献

1
Lags and leads of accommodation in humans: Fact or fiction?
J Vis. 2021 Mar 1;21(3):21. doi: 10.1167/jov.21.3.21.
2
Centroid error due to non-uniform lenslet illumination in the Shack-Hartmann wavefront sensor.
Opt Lett. 2019 Sep 1;44(17):4167-4170. doi: 10.1364/OL.44.004167.
3
Vision science and adaptive optics, the state of the field.
Vision Res. 2017 Mar;132:3-33. doi: 10.1016/j.visres.2017.01.006. Epub 2017 Feb 27.
4
Changes in Retinal Nerve Fiber Layer Reflectance Intensity as a Predictor of Functional Progression in Glaucoma.
Invest Ophthalmol Vis Sci. 2016 Mar;57(3):1221-7. doi: 10.1167/iovs.15-18788.
5
Modal content of living human cone photoreceptors.
Biomed Opt Express. 2015 Aug 17;6(9):3378-404. doi: 10.1364/BOE.6.003378. eCollection 2015 Sep 1.
6
Unbiased estimation of refractive state of aberrated eyes.
Vision Res. 2011 Sep 1;51(17):1932-40. doi: 10.1016/j.visres.2011.07.006. Epub 2011 Jul 14.
7
Analysis of individual cone-photoreceptor directionality using scanning laser ophthalmoscopy.
Biomed Opt Express. 2011 Jun 1;2(6):1423-31. doi: 10.1364/BOE.2.001423. Epub 2011 May 4.
8
Forward light scatter analysis of the eye in a spatially-resolved double-pass optical system.
Opt Express. 2011 Apr 11;19(8):7417-38. doi: 10.1364/OE.19.007417.
9
Modeling the foveal cone mosaic imaged with adaptive optics scanning laser ophthalmoscopy.
Opt Express. 2010 Nov 22;18(24):24902-16. doi: 10.1364/OE.18.024902.

本文引用的文献

1
Cone directionality from laser ray tracing in normal and LASIK patients.
J Mod Opt. 2009;56(20):2181-2188. doi: 10.1080/09500340902927074.
2
Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics.
Opt Express. 2009 Nov 23;17(24):21634-51. doi: 10.1364/OE.17.021634.
3
Alignment parameters of foveal cones.
J Opt Soc Am A Opt Image Sci Vis. 2009 May;26(5):1260-7. doi: 10.1364/josaa.26.001260.
4
Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography.
Opt Express. 2008 Oct 13;16(21):16410-22. doi: 10.1364/oe.16.016410.
6
Directional and nondirectional spectral reflection from the human fovea.
J Biomed Opt. 2008 Mar-Apr;13(2):024010. doi: 10.1117/1.2899151.
7
Stokes vector analysis of adaptive optics images of the retina.
Opt Lett. 2008 Jan 15;33(2):137-9. doi: 10.1364/ol.33.000137.
8
Wavelength dependence of reflectometric cone photoreceptor directionality.
J Opt Soc Am A Opt Image Sci Vis. 2003 Jan;20(1):18-23. doi: 10.1364/josaa.20.000018.
9
Simultaneous measurement of foveal spectral reflectance and cone-photoreceptor directionality.
Appl Opt. 2002 Aug 1;41(22):4686-96. doi: 10.1364/ao.41.004686.
10
Cone spacing and waveguide properties from cone directionality measurements.
J Opt Soc Am A Opt Image Sci Vis. 1999 May;16(5):995-1004. doi: 10.1364/josaa.16.000995.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验