Ma Wei Ji, Huang Wei
Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
J Vis. 2009 Oct 5;9(11):3.1-30. doi: 10.1167/9.11.3.
Human ability to simultaneously track multiple items declines with set size. This effect is commonly attributed to a fixed limit on the number of items that can be attended to, a notion that is formalized in limited-capacity and slot models. Instead, we propose that observers are constrained by stimulus uncertainty that increases with the number of items but use Bayesian inference to achieve optimal performance. We model five data sets from published deviation discrimination experiments that varied set size, number of deviations, and magnitude of deviation. A constrained Bayesian observer better explains each data set than do the traditional limited-capacity model, the recently proposed slots-plus-averaging model, a fixed-uncertainty Bayesian model, a Bayesian model with capacity limit, and a simple averaging model. This indicates that the notion of limited capacity in attentional tracking needs to be revised. Moreover, it supports the idea that Bayesian optimality of human perception extends to high-level perceptual computations.
人类同时追踪多个项目的能力会随着集合大小的增加而下降。这种效应通常归因于能够被注意到的项目数量存在固定限制,这一概念在有限容量和插槽模型中得到了形式化。相反,我们提出观察者受到随着项目数量增加而上升的刺激不确定性的限制,但会使用贝叶斯推理来实现最佳表现。我们对已发表的偏差辨别实验中的五个数据集进行建模,这些实验在集合大小、偏差数量和偏差幅度方面有所不同。与传统的有限容量模型、最近提出的插槽加平均模型、固定不确定性贝叶斯模型、具有容量限制的贝叶斯模型以及简单平均模型相比,一个受约束的贝叶斯观察者能更好地解释每个数据集。这表明注意力追踪中有限容量的概念需要修正。此外,它支持人类感知的贝叶斯最优性扩展到高级感知计算的观点。