Suppr超能文献

非随机聚类的统计方法及其在癌症体细胞突变中的应用。

Statistical method on nonrandom clustering with application to somatic mutations in cancer.

机构信息

Global Pre-Clinical Statistics, Pfizer Global Research and Development, San Diego, CA 92121, USA.

出版信息

BMC Bioinformatics. 2010 Jan 7;11:11. doi: 10.1186/1471-2105-11-11.

Abstract

BACKGROUND

Human cancer is caused by the accumulation of tumor-specific mutations in oncogenes and tumor suppressors that confer a selective growth advantage to cells. As a consequence of genomic instability and high levels of proliferation, many passenger mutations that do not contribute to the cancer phenotype arise alongside mutations that drive oncogenesis. While several approaches have been developed to separate driver mutations from passengers, few approaches can specifically identify activating driver mutations in oncogenes, which are more amenable for pharmacological intervention.

RESULTS

We propose a new statistical method for detecting activating mutations in cancer by identifying nonrandom clusters of amino acid mutations in protein sequences. A probability model is derived using order statistics assuming that the location of amino acid mutations on a protein follows a uniform distribution. Our statistical measure is the differences between pair-wise order statistics, which is equivalent to the size of an amino acid mutation cluster, and the probabilities are derived from exact and approximate distributions of the statistical measure. Using data in the Catalog of Somatic Mutations in Cancer (COSMIC) database, we have demonstrated that our method detects well-known clusters of activating mutations in KRAS, BRAF, PI3K, and beta-catenin. The method can also identify new cancer targets as well as gain-of-function mutations in tumor suppressors.

CONCLUSIONS

Our proposed method is useful to discover activating driver mutations in cancer by identifying nonrandom clusters of somatic amino acid mutations in protein sequences.

摘要

背景

人类癌症是由致癌基因和肿瘤抑制基因中肿瘤特异性突变的积累引起的,这些突变赋予细胞选择性生长优势。由于基因组不稳定性和高增殖水平,许多不促进癌症表型的乘客突变与驱动致癌的突变一起出现。虽然已经开发了几种方法来区分驱动突变和乘客突变,但很少有方法可以特异性地识别致癌基因中的激活驱动突变,这些突变更适合药物干预。

结果

我们提出了一种通过识别蛋白质序列中氨基酸突变的非随机簇来检测癌症中激活突变的新统计方法。使用顺序统计假设氨基酸突变在蛋白质上的位置遵循均匀分布来导出概率模型。我们的统计量是两两顺序统计量之间的差异,这相当于氨基酸突变簇的大小,概率是从统计量的精确和近似分布中得出的。使用癌症体细胞突变目录(COSMIC)数据库中的数据,我们已经证明我们的方法可以很好地检测 KRAS、BRAF、PI3K 和β-连环蛋白中已知的激活突变簇。该方法还可以识别新的癌症靶点以及肿瘤抑制因子中的功能获得性突变。

结论

我们提出的方法通过识别蛋白质序列中体细胞氨基酸突变的非随机簇,可用于发现癌症中的激活驱动突变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9d4/2822753/737f706edc9c/1471-2105-11-11-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验