Suppr超能文献

辐照度控制真菌的利用:两种部分菌根异养兰花对碳获取的精细调节。

Irradiance governs exploitation of fungi: fine-tuning of carbon gain by two partially myco-heterotrophic orchids.

机构信息

Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany.

出版信息

Proc Biol Sci. 2010 May 7;277(1686):1333-6. doi: 10.1098/rspb.2009.1966. Epub 2010 Jan 6.

Abstract

While all members of the Orchidaceae are fully dependent on mycorrhizal fungi during their achlorophyllous juvenile stages, mature plants may remain fully myco-heterotrophic, become fully autotrophic or develop a nutritional mode where the carbon gain through photosynthesis is complemented by organic carbon from fungal partners. This so-called partial myco-heterotrophy is intriguingly complex. Current knowledge indicates a large range in the proportion of fungus-derived carbon between and within partially myco-heterotrophic plant species. However, the driving factors for this variation are so far mostly unknown. Here we show for two green species of the orchid genus Cephalanthera that light availability is the major determinant of the degree of myco-heterotrophy. Using leaf stable isotope natural abundance analysis together with time-integrated microscale light climate monitoring we could demonstrate that there is a sensitive reaction to varying light availability within forests. Low light levels result in strong myco-heterotrophy while higher irradiances successively drive the orchids towards autotrophy. Our results demonstrate that partial myco-heterotrophy in these species is not a static nutritional mode but a flexible mechanism driven by light availability which allows a balanced usage of carbon resources available in nature.

摘要

虽然兰科植物的所有成员在其无叶绿素的幼体阶段都完全依赖菌根真菌,但成熟植物可能仍然完全是菌异养的,或者发展出一种营养模式,其中通过光合作用获得的碳与真菌伙伴提供的有机碳互补。这种所谓的部分菌异养非常复杂。目前的知识表明,在部分菌异养植物物种之间和内部,真菌衍生碳的比例有很大的差异。然而,到目前为止,这种变化的驱动因素在很大程度上还不清楚。在这里,我们展示了两个属于兰科 Cephalanthera 属的绿色物种,光照可用性是菌异养程度的主要决定因素。我们使用叶片稳定同位素自然丰度分析以及时间积分微尺度光照气候监测,证明了在森林中存在对光照可用性变化的敏感反应。低光照水平导致强烈的菌异养,而更高的辐照度则逐渐使兰花向自养转变。我们的研究结果表明,这些物种的部分菌异养不是一种静态的营养模式,而是一种由光照可用性驱动的灵活机制,允许在自然中平衡利用可用的碳资源。

相似文献

1
Irradiance governs exploitation of fungi: fine-tuning of carbon gain by two partially myco-heterotrophic orchids.
Proc Biol Sci. 2010 May 7;277(1686):1333-6. doi: 10.1098/rspb.2009.1966. Epub 2010 Jan 6.
3
The ectomycorrhizal specialist orchid Corallorhiza trifida is a partial myco-heterotroph.
New Phytol. 2008;178(2):395-400. doi: 10.1111/j.1469-8137.2007.02362.x. Epub 2008 Jan 21.
4
A methodological approach to improve estimates of nutrient gains by partially myco-heterotrophic plants.
Isotopes Environ Health Stud. 2008 Dec;44(4):393-401. doi: 10.1080/10256010802507458.
6
The tiny-leaved orchid Cephalanthera subaphylla obtains most of its carbon via mycoheterotrophy.
J Plant Res. 2016 Nov;129(6):1013-1020. doi: 10.1007/s10265-016-0856-6. Epub 2016 Aug 19.
7
Limited carbon and mineral nutrient gain from mycorrhizal fungi by adult Australian orchids.
Am J Bot. 2012 Jul;99(7):1133-45. doi: 10.3732/ajb.1100575. Epub 2012 Jul 2.
8
Carbon and nitrogen gain during the growth of orchid seedlings in nature.
New Phytol. 2014 Apr;202(2):606-615. doi: 10.1111/nph.12688. Epub 2014 Jan 21.
9
Myco-heterotroph/epiparasitic plant interactions with ectomycorrhizal and arbuscular mycorrhizal fungi.
Curr Opin Plant Biol. 2004 Aug;7(4):422-8. doi: 10.1016/j.pbi.2004.04.004.

引用本文的文献

3
Mycoheterotrophy in the wood-wide web.
Nat Plants. 2024 May;10(5):710-718. doi: 10.1038/s41477-024-01677-0. Epub 2024 Apr 19.
5
Stoichiometry of carbon, nitrogen and phosphorus is closely linked to trophic modes in orchids.
BMC Plant Biol. 2023 Sep 12;23(1):422. doi: 10.1186/s12870-023-04436-z.
6
Effect of light conditions on trophic level and gene expression of partially mycoheterotrophic orchid, .
Plant Signal Behav. 2023 Dec 31;18(1):2180159. doi: 10.1080/15592324.2023.2180159.
8
Genomes of leafy and leafless Platanthera orchids illuminate the evolution of mycoheterotrophy.
Nat Plants. 2022 Apr;8(4):373-388. doi: 10.1038/s41477-022-01127-9. Epub 2022 Apr 21.
9
Mycorrhizal Communities and Isotope Signatures in Two Partially Mycoheterotrophic Orchids.
Front Plant Sci. 2021 Feb 9;12:618140. doi: 10.3389/fpls.2021.618140. eCollection 2021.

本文引用的文献

4
The chlorophyll-containing orchid Corallorhiza trifida derives little carbon through photosynthesis.
New Phytol. 2009;183(2):358-364. doi: 10.1111/j.1469-8137.2009.02853.x. Epub 2009 Apr 27.
5
Isotopic evidence of full and partial myco-heterotrophy in the plant tribe Pyroleae (Ericaceae).
New Phytol. 2009;182(3):719-726. doi: 10.1111/j.1469-8137.2009.02781.x. Epub 2009 Feb 27.
6
A methodological approach to improve estimates of nutrient gains by partially myco-heterotrophic plants.
Isotopes Environ Health Stud. 2008 Dec;44(4):393-401. doi: 10.1080/10256010802507458.
7
The ectomycorrhizal specialist orchid Corallorhiza trifida is a partial myco-heterotroph.
New Phytol. 2008;178(2):395-400. doi: 10.1111/j.1469-8137.2007.02362.x. Epub 2008 Jan 21.
8
Fungal roles in soil ecology: underground networking.
Nature. 2007 Sep 13;449(7159):136-8. doi: 10.1038/449136a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验