Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland.
Faculty of Biology, Department of Vertebrate Ecology and Zoology, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland.
BMC Plant Biol. 2023 Sep 12;23(1):422. doi: 10.1186/s12870-023-04436-z.
Mycorrhiza is a ubiquitous form of symbiosis based on the mutual, beneficial exchange of resources between roots of autotrophic (AT) plants and heterotrophic soil fungi throughout a complex network of fungal mycelium. Mycoheterotrophic (MH) and mixotrophic (MX) plants can parasitise this system, gaining all or some (respectively) required nutrients without known reciprocity to the fungus. We applied, for the first time, an ecological stoichiometry framework to test whether trophic mode of plants influences their elemental carbon (C), nitrogen (N), and phosphorus (P) composition and may provide clues about their biology and evolution within the framework of mycorrhizal network functioning.
We analysed C:N:P stoichiometry of 24 temperate orchid species and P concentration of 135 species from 45 plant families sampled throughout temperate and intertropical zones representing the three trophic modes (AT, MX and MH). Welch's one-way ANOVA and PERMANOVA were used to compare mean nutrient values and their proportions among trophic modes, phylogeny, and climate zones. Nutrient concentration and stoichiometry significantly differentiate trophic modes in orchids. Mean foliar C:N:P stoichiometry showed a gradual increase of N and P concentration and a decrease of C: nutrients ratio along the trophic gradient AT < MX < MH, with surprisingly high P requirements of MH orchids. Although P concentration in orchids showed the trophy-dependent pattern regardless of climatic zone, P concentration was not a universal indicator of trophic modes, as shown by ericaceous MH and MX plants.
The results imply that there are different evolutionary pathways of adaptation to mycoheterotrophic nutrient acquisition, and that the high nutrient requirements of MH orchids compared to MH plants from other families may represent a higher cost to the fungal partner and consequently lead to the high fungal specificity observed in MH orchids.
菌根是一种普遍存在的共生形式,基于自养(AT)植物的根系与异养土壤真菌之间相互、互利的资源交换,通过复杂的真菌菌丝网络进行。菌根异养(MH)和混养(MX)植物可以寄生在这个系统中,无需对真菌进行已知的互惠,就可以获得所有或部分(分别)所需的营养物质。我们首次应用生态化学计量学框架来检验植物的营养模式是否会影响其元素碳(C)、氮(N)和磷(P)组成,并为它们在菌根网络功能框架内的生物学和进化提供线索。
我们分析了 24 种温带兰花物种的 C:N:P 化学计量比和 45 个植物科的 135 种物种的 P 浓度,这些物种来自温带和热带地区,代表了三种营养模式(AT、MX 和 MH)。我们使用 Welch 的单因素方差分析和 PERMANOVA 来比较营养模式、系统发育和气候带之间的平均养分值及其比例。养分浓度和化学计量比在兰花中显著区分营养模式。叶片 C:N:P 化学计量比表明,随着营养梯度 AT<MX<MH 的增加,N 和 P 浓度逐渐增加,C:养分比降低,MH 兰花对 P 的需求惊人地高。尽管无论气候带如何,兰花中的 P 浓度都表现出依赖于营养级的模式,但正如来自其他科的 ERICACEAE MH 和 MX 植物所示,P 浓度并不是营养模式的普遍指标。
结果表明,存在适应菌根异养营养获取的不同进化途径,与其他科的 MH 植物相比,MH 兰花对 P 的高需求可能代表对真菌伙伴的更高成本,从而导致在 MH 兰花中观察到的高真菌特异性。