Suppr超能文献

视网膜神经节细胞离子通道的机制和分布:以温度作为独立变量。

Mechanisms and distribution of ion channels in retinal ganglion cells: using temperature as an independent variable.

机构信息

Department of Integrative Biology Physiology, 6-125 Jackson Hall, 321 Church Street S.E., University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

J Neurophysiol. 2010 Mar;103(3):1357-74. doi: 10.1152/jn.00123.2009. Epub 2010 Jan 6.

Abstract

Trains of action potentials of rat and cat retinal ganglion cells (RGCs) were recorded intracellularly across a temperature range of 7-37 degrees C. Phase plots of the experimental impulse trains were precision fit using multicompartment simulations of anatomically reconstructed rat and cat RGCs. Action potential excitation was simulated with a "Five-channel model" [Na, K(delayed rectifier), Ca, K(A), and K(Ca-activated) channels] and the nonspace-clamped condition of the whole cell recording was exploited to determine the channels' distribution on the dendrites, soma, and proximal axon. At each temperature, optimal phase-plot fits for RGCs occurred with the same unique channel distribution. The "waveform" of the electrotonic current was found to be temperature dependent, which reflected the shape changes in the experimental action potentials and confirmed the channel distributions. The distributions are cell-type specific and adequate for soma and dendritic excitation with a safety margin. The highest Na-channel density was found on an axonal segment some 50-130 microm distal to the soma, as determined from the temperature-dependent "initial segment-somadendritic (IS-SD) break." The voltage dependence of the gating rate constants remains invariant between 7 and 23 degrees C and between 30 and 37 degrees C, but undergoes a transition between 23 and 30 degrees C. Both gating-kinetic and ion-permeability Q10s remain virtually constant between 23 and 37 degrees C (kinetic Q10s = 1.9-1.95; permeability Q10s = 1.49-1.64). The Q10s systematically increase for T <23 degrees C (kinetic Q10 = 8 at T = 8 degrees C). The Na channels were consistently "sleepy" (non-Arrhenius) for T <8 degrees C, with a loss of spiking for T <7 degrees C.

摘要

在 7-37°C 的温度范围内,记录了大鼠和猫视网膜神经节细胞 (RGC) 的动作电位序列。通过对解剖重建的大鼠和猫 RGC 的多室模拟,对实验冲动序列的相图进行了精密拟合。动作电位激发采用“五通道模型”[Na、K(延迟整流)、Ca、K(A)和 K(Ca 激活)通道]进行模拟,利用整个细胞记录的非空间钳位条件来确定通道在树突、体和近端轴突上的分布。在每个温度下,RGC 的最佳相图拟合都具有相同的独特通道分布。电紧张电流的“波形”随温度而变化,这反映了实验动作电位的形状变化,并证实了通道分布。这些分布是细胞类型特异性的,足以满足体和树突激发的需要,并有安全裕度。通过温度依赖性的“初始段-体-树突(IS-SD)断裂”,发现最高的 Na 通道密度位于距体约 50-130 µm 的轴突段上。门控速率常数的电压依赖性在 7 和 23°C 以及 30 和 37°C 之间保持不变,但在 23 和 30°C 之间发生转变。在 23 和 37°C 之间,门控动力学和离子通透性 Q10 几乎保持不变(动力学 Q10=1.9-1.95;通透性 Q10=1.49-1.64)。对于 T<23°C,Q10 系统地增加(动力学 Q10=8,T=8°C)。对于 T<8°C,Na 通道一直处于“休眠”状态(非 Arrhenius),T<7°C 时则失去脉冲。

相似文献

1
Mechanisms and distribution of ion channels in retinal ganglion cells: using temperature as an independent variable.
J Neurophysiol. 2010 Mar;103(3):1357-74. doi: 10.1152/jn.00123.2009. Epub 2010 Jan 6.
2
Voltage gating by molecular subunits of Na+ and K+ ion channels: higher-dimensional cubic kinetics, rate constants, and temperature.
J Neurophysiol. 2015 Jun 1;113(10):3759-77. doi: 10.1152/jn.00551.2014. Epub 2015 Apr 1.
4
Functional distribution of three types of Na+ channel on soma and processes of dorsal horn neurones of rat spinal cord.
J Physiol. 1997 Sep 1;503 ( Pt 2)(Pt 2):371-85. doi: 10.1111/j.1469-7793.1997.371bh.x.
5
Modeling temporal behavior of postnatal cat retinal ganglion cells.
J Theor Biol. 2001 May 21;210(2):187-99. doi: 10.1006/jtbi.2000.2289.
8
Transient and sustained depolarization of retinal ganglion cells by Ih.
J Neurophysiol. 1996 May;75(5):1932-43. doi: 10.1152/jn.1996.75.5.1932.
9
Impulse encoding across the dendritic morphologies of retinal ganglion cells.
J Neurophysiol. 1999 Apr;81(4):1685-98. doi: 10.1152/jn.1999.81.4.1685.
10
An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice.
J Neurophysiol. 1994 Jan;71(1):375-400. doi: 10.1152/jn.1994.71.1.375.

引用本文的文献

1
Understanding responses to multi-electrode epiretinal stimulation using a biophysical model.
J Neural Eng. 2025 Jan 23;22(1). doi: 10.1088/1741-2552/ada1fe.
5
Interdependence of cellular and network properties in respiratory rhythmogenesis.
bioRxiv. 2023 Nov 2:2023.10.30.564834. doi: 10.1101/2023.10.30.564834.
6
Inference of Electrical Stimulation Sensitivity from Recorded Activity of Primate Retinal Ganglion Cells.
J Neurosci. 2023 Jun 28;43(26):4808-4820. doi: 10.1523/JNEUROSCI.1023-22.2023. Epub 2023 Jun 2.
7
Impact of Retinal Degeneration on Response of ON and OFF Cone Bipolar Cells to Electrical Stimulation.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:2424-2437. doi: 10.1109/TNSRE.2023.3276431. Epub 2023 May 26.
8
The role of feedback and modulation in determining temperature resiliency in the lobster cardiac nervous system.
Front Neurosci. 2023 Mar 9;17:1113843. doi: 10.3389/fnins.2023.1113843. eCollection 2023.
9
Modeling extracellular stimulation of retinal ganglion cells: theoretical and practical aspects.
J Neural Eng. 2023 Mar 13;20(2):026011. doi: 10.1088/1741-2552/acbf79.
10
Macromolecular rate theory explains the temperature dependence of membrane conductance kinetics.
Biophys J. 2023 Feb 7;122(3):522-532. doi: 10.1016/j.bpj.2022.12.033. Epub 2022 Dec 24.

本文引用的文献

1
A nerve model of greatly increased energy-efficiency and encoding flexibility over the Hodgkin-Huxley model.
Brain Res. 2009 Nov 3;1296:225-33. doi: 10.1016/j.brainres.2009.06.101. Epub 2009 Jul 9.
2
Expression of Nav1.1 in rat retinal AII amacrine cells.
Neurosci Lett. 2007 Sep 7;424(2):83-8. doi: 10.1016/j.neulet.2007.07.023. Epub 2007 Aug 1.
4
Polarized distribution of ion channels within microdomains of the axon initial segment.
J Comp Neurol. 2007 Jan 10;500(2):339-52. doi: 10.1002/cne.21173.
6
Availability of low-threshold Ca2+ current in retinal ganglion cells.
J Neurophysiol. 2003 Dec;90(6):3888-901. doi: 10.1152/jn.00477.2003.
8
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol. 1952 Aug;117(4):500-44. doi: 10.1113/jphysiol.1952.sp004764.
9
Gap junctional coupling underlies the short-latency spike synchrony of retinal alpha ganglion cells.
J Neurosci. 2003 Jul 30;23(17):6768-77. doi: 10.1523/JNEUROSCI.23-17-06768.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验