Suppr超能文献

使用生物物理模型理解对多电极视网膜上刺激的反应。

Understanding responses to multi-electrode epiretinal stimulation using a biophysical model.

作者信息

Vilkhu Ramandeep S, Vasireddy Praful K, Kish Kathleen E, Gogliettino Alex R, Lotlikar Amrith, Hottowy Pawel, Dabrowski Wladyslaw, Sher Alexander, Litke Alan M, Mitra Subhasish, Chichilnisky E J

机构信息

Department of Electrical Engineering, Stanford University, Stanford, CA, United States of America.

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America.

出版信息

J Neural Eng. 2025 Jan 23;22(1). doi: 10.1088/1741-2552/ada1fe.

Abstract

Neural interfaces are designed to evoke specific patterns of electrical activity in populations of neurons by stimulating with many electrodes. However, currents passed simultaneously through multiple electrodes often combine nonlinearly to drive neural responses, making evoked responses difficult to predict and control. This response nonlinearity could arise from the interaction of many excitable sites in each cell, any of which can produce a spike. However, this multi-site activation hypothesis is difficult to verify experimentally.We developed a biophysical model to study retinal ganglion cell responses to multi-electrode stimulation and validated it using data collected frompreparations of the macaque retina using a microelectrode array (512 electrodes; 30m pitch; 10m diameter).First, the model was validated by using it to reproduce essential empirical findings from single-electrode recording and stimulation, including recorded spike voltage waveforms at multiple locations and sigmoidal responses to injected current. Then, stimulation with two electrodes was modeled to test how the positioning of the electrodes relative to the cell affected the degree of response nonlinearity. Currents passed through pairs of electrodes positioned near the cell body or far from the axon (>40m) exhibited approximately linear summation in evoking spikes. Currents passed through pairs of electrodes close to the axon summed linearly when their locations along the axon were similar, and nonlinearly otherwise. Over a range of electrode placements, several distinct, localized spike initiation sites were observed, and the number of these sites covaried with the degree of response nonlinearity. Similar trends were observed for three-electrode stimuli. All of these trends in the simulation were consistent with experimental observations.These findings support the multi-site activation hypothesis for nonlinear activation of neurons, providing a biophysical interpretation of previous experimental results and potentially enabling more efficient use of multi-electrode stimuli in future neural implants.

摘要

神经接口旨在通过多个电极进行刺激,以诱发神经元群体中特定的电活动模式。然而,同时通过多个电极的电流常常会非线性地组合起来,从而驱动神经反应,使得诱发反应难以预测和控制。这种反应非线性可能源于每个细胞中多个可兴奋位点的相互作用,其中任何一个位点都可能产生一个尖峰。然而,这种多位点激活假说很难通过实验进行验证。我们开发了一个生物物理模型来研究视网膜神经节细胞对多电极刺激的反应,并使用从猕猴视网膜制备物中通过微电极阵列(512个电极;30微米间距;10微米直径)收集的数据对其进行了验证。首先,通过使用该模型重现单电极记录和刺激的基本实验结果来对模型进行验证,这些结果包括在多个位置记录的尖峰电压波形以及对注入电流的S形反应。然后,对双电极刺激进行建模,以测试电极相对于细胞的位置如何影响反应非线性程度。通过位于细胞体附近或远离轴突(>40微米)的一对电极的电流在诱发尖峰时表现出近似线性的总和。当沿着轴突的位置相似时,通过靠近轴突的一对电极的电流线性相加,否则非线性相加。在一系列电极位置上,观察到了几个不同的、局部的尖峰起始位点,并且这些位点的数量与反应非线性程度相关。对于三电极刺激也观察到了类似的趋势。模拟中的所有这些趋势都与实验观察结果一致。这些发现支持了神经元非线性激活的多位点激活假说,为先前的实验结果提供了生物物理解释,并有可能在未来的神经植入物中更有效地使用多电极刺激。

相似文献

6
Sites of neuronal excitation by epiretinal electrical stimulation.视网膜前电刺激引起神经元兴奋的部位。
IEEE Trans Neural Syst Rehabil Eng. 2006 Mar;14(1):5-13. doi: 10.1109/TNSRE.2006.870488.

本文引用的文献

9
An update on retinal prostheses.视网膜假体研究进展
Clin Neurophysiol. 2020 Jun;131(6):1383-1398. doi: 10.1016/j.clinph.2019.11.029. Epub 2019 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验