Suppr超能文献

前额叶和顶叶皮层的空间注意控制机制。

Mechanisms of spatial attention control in frontal and parietal cortex.

机构信息

Department of Psychology, Center for the Study of Brain, Mind, and Behavior, and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08540, USA.

出版信息

J Neurosci. 2010 Jan 6;30(1):148-60. doi: 10.1523/JNEUROSCI.3862-09.2010.

Abstract

Theories of spatial attentional control have been largely based upon studies of patients suffering from visuospatial neglect, resulting from circumscribed lesions of frontal and posterior parietal cortex. In the intact brain, the control of spatial attention has been related to a distributed frontoparietal attention network. Little is known about the nature of the control mechanisms exerted by this network. Here, we used a novel region-of-interest approach to relate activations of the attention network to recently described topographic areas in frontal cortex [frontal eye field (FEF), PreCC/IFS (precentral cortex/inferior frontal sulcus)] and parietal cortex [intraparietal sulcus areas (IPS1-IPS5) and an area in the superior parietal lobule (SPL1)] to examine their spatial attention signals. We found that attention signals in most topographic areas were spatially specific, with stronger responses when attention was directed to the contralateral than to the ipsilateral visual field. Importantly, two hemispheric asymmetries were found. First, a region in only right, but not left SPL1 carried spatial attention signals. Second, left FEF and left posterior parietal cortex (IPS1/2) generated stronger contralateral biasing signals than their counterparts in the right hemisphere. These findings are the first to characterize spatial attention signals in topographic frontal and parietal cortex and provide a neural basis in support of an interhemispheric competition account of spatial attentional control.

摘要

空间注意控制理论主要基于对因额叶和顶后皮质局灶性损伤而导致的视空间忽视患者的研究。在完整的大脑中,空间注意的控制与分布式额顶注意网络有关。对于该网络施加的控制机制的性质,我们知之甚少。在这里,我们使用一种新颖的感兴趣区域方法,将注意网络的激活与最近在额叶[额眼区(FEF)、前中央皮层/额下回(precentral cortex/inferior frontal sulcus)]和顶叶[顶内沟区(IPS1-IPS5)和上顶叶区(SPL1)]中描述的拓扑区域相关联,以检查它们的空间注意信号。我们发现,大多数拓扑区域的注意信号具有空间特异性,当注意力指向对侧视野时,反应更强。重要的是,发现了两个半球不对称。首先,只有右侧 SPL1 的一个区域携带空间注意信号,而左侧 SPL1 则没有。其次,左额前皮质(FEF)和左顶后皮质(IPS1/2)产生的对侧偏向信号比右侧对应区域更强。这些发现是首次对拓扑额顶叶皮质中的空间注意信号进行特征描述,并为支持空间注意控制的半球间竞争理论提供了神经基础。

相似文献

1
Mechanisms of spatial attention control in frontal and parietal cortex.
J Neurosci. 2010 Jan 6;30(1):148-60. doi: 10.1523/JNEUROSCI.3862-09.2010.
3
Dynamic activation of frontal, parietal, and sensory regions underlying anticipatory visual spatial attention.
J Neurosci. 2011 Sep 28;31(39):13880-9. doi: 10.1523/JNEUROSCI.1519-10.2011.
4
Shifting attentional priorities: control of spatial attention through hemispheric competition.
J Neurosci. 2013 Mar 20;33(12):5411-21. doi: 10.1523/JNEUROSCI.4089-12.2013.
5
Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention.
J Neurosci. 2008 Oct 1;28(40):10056-61. doi: 10.1523/JNEUROSCI.1776-08.2008.
7
Auditory Spatial Coding Flexibly Recruits Anterior, but Not Posterior, Visuotopic Parietal Cortex.
Cereb Cortex. 2016 Mar;26(3):1302-1308. doi: 10.1093/cercor/bhv303. Epub 2015 Dec 11.
9
Brain Activations During Optokinetic Stimulation in Acute Right-Hemisphere Stroke Patients and Hemispatial Neglect: An fMRI Study.
Neurorehabil Neural Repair. 2019 Jul;33(7):581-592. doi: 10.1177/1545968319855038. Epub 2019 Jun 12.
10
Lesion evidence for the critical role of the intraparietal sulcus in spatial attention.
Brain. 2011 Jun;134(Pt 6):1694-709. doi: 10.1093/brain/awr085. Epub 2011 May 15.

引用本文的文献

4
Behavioural and neural effects of eccentricity and visual field during covert visuospatial attention.
Neuroimage Rep. 2021 Jul 26;1(3):100039. doi: 10.1016/j.ynirp.2021.100039. eCollection 2021 Sep.
5
Depicting Coupling Between Cortical Morphology and Functional Networks in Major Depressive Disorder.
Depress Anxiety. 2025 Apr 27;2025:6885509. doi: 10.1155/da/6885509. eCollection 2025.
7
Decoding Parametric Grip-Force Anticipation From fMRI Data.
Hum Brain Mapp. 2025 Feb 15;46(3):e70154. doi: 10.1002/hbm.70154.
8
Arousal effects on oscillatory dynamics in the non-human primate brain.
Cereb Cortex. 2024 Dec 3;34(12). doi: 10.1093/cercor/bhae473.
9
Are neuronal mechanisms of attention universal across human sensory and motor brain maps?
Psychon Bull Rev. 2024 Dec;31(6):2371-2389. doi: 10.3758/s13423-024-02495-3. Epub 2024 Apr 8.

本文引用的文献

1
Topographic maps in human frontal and parietal cortex.
Trends Cogn Sci. 2009 Nov;13(11):488-95. doi: 10.1016/j.tics.2009.08.005. Epub 2009 Sep 14.
3
Neural integration of top-down spatial and feature-based information in visual search.
J Neurosci. 2008 Jun 11;28(24):6141-51. doi: 10.1523/JNEUROSCI.1262-08.2008.
4
Retinotopy and attention in human occipital, temporal, parietal, and frontal cortex.
Cereb Cortex. 2008 Sep;18(9):2158-68. doi: 10.1093/cercor/bhm242. Epub 2008 Jan 29.
5
Two hierarchically organized neural systems for object information in human visual cortex.
Nat Neurosci. 2008 Feb;11(2):224-31. doi: 10.1038/nn2036. Epub 2008 Jan 13.
6
The representation of spatial attention in human parietal cortex dynamically modulates with performance.
Cereb Cortex. 2008 Jun;18(6):1272-80. doi: 10.1093/cercor/bhm158. Epub 2007 Oct 24.
7
Visual topography of human intraparietal sulcus.
J Neurosci. 2007 May 16;27(20):5326-37. doi: 10.1523/JNEUROSCI.0991-07.2007.
8
Specificity of human cortical areas for reaches and saccades.
J Neurosci. 2007 Apr 25;27(17):4687-96. doi: 10.1523/JNEUROSCI.0459-07.2007.
9
Topographic maps in human frontal cortex revealed in memory-guided saccade and spatial working-memory tasks.
J Neurophysiol. 2007 May;97(5):3494-507. doi: 10.1152/jn.00010.2007. Epub 2007 Mar 14.
10
Right hemispatial neglect: frequency and characterization following acute left hemisphere stroke.
Brain Cogn. 2007 Jun;64(1):50-9. doi: 10.1016/j.bandc.2006.10.005. Epub 2006 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验