Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
J Biol Chem. 2010 Mar 12;285(11):8278-89. doi: 10.1074/jbc.M109.005967. Epub 2010 Jan 6.
Inactivation of thrombin (T) by the serpins heparin cofactor II (HCII) and antithrombin (AT) is accelerated by a heparin template between the serpin and thrombin exosite II. Unlike AT, HCII also uses an allosteric interaction of its NH(2)-terminal segment with exosite I. Sucrose octasulfate (SOS) accelerated thrombin inactivation by HCII but not AT by 2000-fold. SOS bound to two sites on thrombin, with dissociation constants (K(D)) of 10 +/- 4 microm and 400 +/- 300 microm that were not kinetically resolvable, as evidenced by single hyperbolic SOS concentration dependences of the inactivation rate (k(obs)). SOS bound HCII with K(D) 1.45 +/- 0.30 mm, and this binding was tightened in the T.SOS.HCII complex, characterized by K(complex) of approximately 0.20 microm. Inactivation data were incompatible with a model solely depending on HCII.SOS but fit an equilibrium linkage model employing T.SOS binding in the pathway to higher order complex formation. Hirudin-(54-65)(SO(3)(-)) caused a hyperbolic decrease of the inactivation rates, suggesting partial competitive binding of hirudin-(54-65)(SO(3)(-)) and HCII to exosite I. Meizothrombin(des-fragment 1), binding SOS with K(D) = 1600 +/- 300 microm, and thrombin were inactivated at comparable rates, and an exosite II aptamer had no effect on the inactivation, suggesting limited exosite II involvement. SOS accelerated inactivation of meizothrombin 1000-fold, reflecting the contribution of direct exosite I interaction with HCII. Thrombin generation in plasma was suppressed by SOS, both in HCII-dependent and -independent processes. The ex vivo HCII-dependent process may utilize the proposed model and suggests a potential for oversulfated disaccharides in controlling HCII-regulated thrombin generation.
肝素辅因子 II (HCII) 和抗凝血酶 (AT) 通过丝氨酸蛋白酶抑制剂与凝血酶外切位点 II 之间的肝素模板使凝血酶失活。与 AT 不同,HCII 还利用其 NH(2)-末端片段与外切位点 I 的变构相互作用。蔗糖八硫酸酯 (SOS) 使 HCII 而不是 AT 的凝血酶失活速度加快了 2000 倍。SOS 与凝血酶结合两个位点,解离常数 (K(D)) 分别为 10 +/- 4 微摩尔和 400 +/- 300 微摩尔,由于失活速率的单超双曲线 SOS 浓度依赖性,这些常数在动力学上不可分辨(k(obs))。SOS 与 HCII 的 K(D) 为 1.45 +/- 0.30 mM,并且这种结合在 T.SOS.HCII 复合物中得到加强,其特征是 K(complex)约为 0.20 微摩尔。失活数据与完全依赖 HCII.SOS 的模型不兼容,但符合采用 T.SOS 结合的平衡连接模型,用于形成更高阶复合物的途径。水蛭素-(54-65)(SO(3)(-))导致失活速率呈双曲线下降,表明水蛭素-(54-65)(SO(3)(-))和 HCII 对外切位点 I 的部分竞争性结合。Meizothrombin(des-fragment 1)与 SOS 的 K(D) = 1600 +/- 300 微摩尔结合,并以相当的速率失活,外切位点 II 适体对失活没有影响,表明外切位点 II 的参与有限。SOS 使 meizothrombin 的失活速度加快了 1000 倍,反映了直接与 HCII 相互作用的外切位点 I 的贡献。SOS 抑制了血浆中的凝血酶生成,无论是在 HCII 依赖型还是非依赖型过程中。HCII 依赖型的体外过程可能利用了所提出的模型,并表明过硫酸化二糖在控制 HCII 调节的凝血酶生成方面具有潜力。