Suppr超能文献

一种通过包括ST段变化分析的风险评分模型预测重症监护病房急性低血压发作的方法。

A methodology for prediction of acute hypotensive episodes in ICU via a risk scoring model including analysis of ST-segment variations.

作者信息

Ghaffari A, Homaeinezhad M R, Atarod M, Akraminia M

机构信息

CardioVascular Research Group (CVRG), Department of Mechanical Engineering, K.N. Toosi University of Technology, No. 15 Pardis Street, Mollasadra Avenue, Vanak Sq., Tehran, Iran.

出版信息

Cardiovasc Eng. 2010 Mar;10(1):12-29. doi: 10.1007/s10558-009-9088-x.

Abstract

The aim of this study is to detect Acute Hypotensive Episodes (AHE) and Mean Arterial Pressure Dropping Regimes (MAPDRs) using ECG signal and Arterial Blood Pressure waveforms. To meet this end, the QRS complexes and end-systolic end-diastolic pulses are first extracted using two innovative Modified Hilbert Transform-Based algorithms namely as ECGMHT and BPMHT. A new smoothing algorithm is next developed based on piecewise polynomial fitting to smooth the fast fluctuations observed in RR-tachogram, systolic blood pressure (SBP) and diastolic blood pressure (DBP) trends. Afterwards, in order to consider the mutual influence of parameters on the evaluation of shock probability, a Sugeno Adaptive Network-based Fuzzy Inference System-ANFIS is trained using Hasdai et al. (J Am Coll Cardiol, 35: 136–143, 2000) parameters as input, with appropriate membership functions for each parameter. Using this network, it will be possible to incorporate the possible mutual influences between risk parameters such as heart rate, SBP, DBP, ST-segment episodes, age, gender, weight and some miscellaneous factors to the calculation of shock occurrence probability. In the next step, the proposed algorithm is applied to 15 subjects of the MIMIC II Database and AHE and MAPDRs (MAP ≤ 60 mmHg with a period of 30 min or more) are identified. As a result of this study, for a sequence of MAPDRs as long as 20 min or more, there will exist a consequent high peak with the duration of 3–4 min in the corresponding probability of cardiogenic shock diagram.

摘要

本研究的目的是利用心电图信号和动脉血压波形检测急性低血压发作(AHE)和平均动脉压下降模式(MAPDR)。为此,首先使用两种基于改进希尔伯特变换的创新算法,即ECGMHT和BPMHT,提取QRS波群和收缩期末舒张期末脉搏。接下来,基于分段多项式拟合开发一种新的平滑算法,以平滑RR间期图、收缩压(SBP)和舒张压(DBP)趋势中观察到的快速波动。之后,为了考虑参数对休克概率评估的相互影响,使用Hasdai等人(《美国心脏病学会杂志》,35: 136–143,2000)的参数作为输入,训练一个基于Sugeno自适应网络的模糊推理系统-ANFIS,并为每个参数设置适当的隶属函数。利用这个网络,就可以将心率、SBP、DBP、ST段发作、年龄、性别、体重等风险参数以及一些其他因素之间可能的相互影响纳入到休克发生概率的计算中。下一步,将所提出的算法应用于MIMIC II数据库的15名受试者,识别AHE和MAPDR(MAP≤60 mmHg持续30分钟或更长时间)。作为本研究的结果,对于长达20分钟或更长时间的MAPDR序列,在相应的心源性休克概率图中会存在一个持续3 - 4分钟的后续高峰。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验