Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Eur Biophys J. 2010 Jul;39(8):1219-27. doi: 10.1007/s00249-009-0575-1. Epub 2010 Jan 7.
Atomic force microscopy (AFM)-based dynamic force spectroscopy of single molecular interactions involves characterizing unbinding/unfolding force distributions over a range of pulling speeds. Owing to their size and stiffness, AFM cantilevers are adversely affected by hydrodynamic forces, especially at pulling speeds >10 microm/s, when the viscous drag becomes comparable to the unbinding/unfolding forces. To circumvent these adverse effects, we have fabricated polymer-based membranes capable of actuating commercial AFM cantilevers at speeds >or=100 microm/s with minimal viscous drag effects. We have used FLUENT, a computational fluid dynamics (CFD) software, to simulate high-speed pulling and fast actuation of AFM cantilevers and membranes in different experimental configurations. The simulation results support the experimental findings on a variety of commercial AFM cantilevers and predict significant reduction in drag forces when membrane actuators are used. Unbinding force experiments involving human antibodies using these membranes demonstrate that it is possible to achieve bond loading rates >or=10(6) pN/s, an order of magnitude greater than that reported with commercial AFM cantilevers and systems.
基于原子力显微镜(AFM)的单分子相互作用动态力谱学涉及在一系列拉伸速度下对解结合/解折叠力分布进行特征描述。由于其尺寸和刚度,AFM 悬臂梁会受到流体动力的不利影响,特别是在拉伸速度>10μm/s 时,粘性阻力变得与解结合/解折叠力相当。为了规避这些不利影响,我们制造了基于聚合物的膜,能够以最小的粘性阻力在>or=100μm/s 的速度驱动商业 AFM 悬臂梁。我们使用计算流体动力学(CFD)软件 FLUENT 模拟了不同实验配置下 AFM 悬臂梁和膜的高速拉伸和快速驱动。模拟结果支持了各种商业 AFM 悬臂梁和预测的实验结果,表明使用膜致动器可以显著减少阻力。使用这些膜进行的涉及人抗体的解结合力实验表明,实现键加载率>or=10(6)pN/s 是可能的,这比使用商业 AFM 悬臂梁和系统报道的要高一个数量级。