Suppr超能文献

西尼罗河病毒传播动力学中的滞后分岔与最优控制。

Backward bifurcation and optimal control in transmission dynamics of west nile virus.

机构信息

Department of Mathematics, Florida A & M University, Tallahassee, FL 32307, USA.

出版信息

Bull Math Biol. 2010 May;72(4):1006-28. doi: 10.1007/s11538-009-9480-0. Epub 2010 Jan 7.

Abstract

The paper considers a deterministic model for the transmission dynamics of West Nile virus (WNV) in the mosquito-bird-human zoonotic cycle. The model, which incorporates density-dependent contact rates between the mosquito population and the hosts (birds and humans), is rigorously analyzed using dynamical systems techniques and theories. These analyses reveal the existence of the phenomenon of backward bifurcation (where the stable disease-free equilibrium of the model co-exists with a stable endemic equilibrium when the reproduction number of the disease is less than unity) in WNV transmission dynamics. The epidemiological consequence of backward bifurcation is that the classical requirement of having the reproduction number less than unity, while necessary, is no longer sufficient for WNV elimination from the population. It is further shown that the model with constant contact rates can also exhibit this phenomenon if the WNV-induced mortality in the avian population is high enough. The model is extended to assess the impact of some anti-WNV control measures, by re-formulating the model as an optimal control problem with density-dependent demographic parameters. This entails the use of two control functions, one for mosquito-reduction strategies and the other for personal (human) protection, and redefining the demographic parameters as density-dependent rates. Appropriate optimal control methods are used to characterize the optimal levels of the two controls. Numerical simulations of the optimal control problem, using a set of reasonable parameter values, suggest that mosquito reduction controls should be emphasized ahead of personal protection measures.

摘要

本文考虑了蚊-鸟-人动物传染病传播动力学的确定性模型。该模型整合了蚊群与宿主(鸟类和人类)之间的密度依赖接触率,采用动力系统技术和理论进行了严格分析。这些分析揭示了西尼罗河病毒(WNV)传播动力学中反向分歧现象(当疾病的繁殖数小于 1 时,模型的稳定无病平衡点与稳定的地方病平衡点共存)的存在。反向分歧的流行病学后果是,繁殖数小于 1 虽然是必要的,但对于从人群中消除 WNV 已不再是充分的条件。进一步表明,如果鸟类群体中由 WNV 引起的死亡率足够高,那么具有恒定接触率的模型也可能表现出这种现象。通过将模型重新表述为具有密度依赖人口参数的最优控制问题,对模型进行了扩展,以评估一些抗 WNV 控制措施的影响。这需要使用两个控制函数,一个用于减少蚊子的策略,另一个用于个人(人类)保护,并将人口参数重新定义为密度依赖的速率。使用适当的最优控制方法来确定两个控制的最优水平。使用一组合理的参数值对最优控制问题进行数值模拟,表明应优先强调减少蚊子的控制措施,而不是个人保护措施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验