Suppr超能文献

登革热传播动力学中的反向分岔

Backward bifurcations in dengue transmission dynamics.

作者信息

Garba S M, Gumel A B, Abu Bakar M R

机构信息

Department of Mathematics, University of Manitoba, Winnipeg, Man., Canada R3T 2N2.

出版信息

Math Biosci. 2008 Sep;215(1):11-25. doi: 10.1016/j.mbs.2008.05.002. Epub 2008 May 20.

Abstract

A deterministic model for the transmission dynamics of a strain of dengue disease, which allows transmission by exposed humans and mosquitoes, is developed and rigorously analysed. The model, consisting of seven mutually-exclusive compartments representing the human and vector dynamics, has a locally-asymptotically stable disease-free equilibrium (DFE) whenever a certain epidemiological threshold, known as the basic reproduction number(R(0)) is less than unity. Further, the model exhibits the phenomenon of backward bifurcation, where the stable DFE coexists with a stable endemic equilibrium. The epidemiological consequence of this phenomenon is that the classical epidemiological requirement of making R(0) less than unity is no longer sufficient, although necessary, for effectively controlling the spread of dengue in a community. The model is extended to incorporate an imperfect vaccine against the strain of dengue. Using the theory of centre manifold, the extended model is also shown to undergo backward bifurcation. In both the original and the extended models, it is shown, using Lyapunov function theory and LaSalle Invariance Principle, that the backward bifurcation phenomenon can be removed by substituting the associated standard incidence function with a mass action incidence. In other words, in addition to establishing the presence of backward bifurcation in models of dengue transmission, this study shows that the use of standard incidence in modelling dengue disease causes the backward bifurcation phenomenon of dengue disease.

摘要

我们构建并严格分析了一个登革热疾病毒株传播动力学的确定性模型,该模型允许通过已感染人群和蚊子进行传播。该模型由七个相互排斥的隔室组成,分别代表人类和病媒动态,只要某个被称为基本再生数((R(0)))的特定流行病学阈值小于(1),它就具有局部渐近稳定的无病平衡点(DFE)。此外,该模型呈现出向后分岔现象,即稳定的DFE与稳定的地方病平衡点共存。这种现象的流行病学后果是,尽管使(R(0))小于(1)是必要的,但对于有效控制社区中登革热的传播而言,这一经典流行病学要求已不再充分。该模型被扩展以纳入针对该登革热毒株的一种不完全疫苗。利用中心流形理论,扩展后的模型也被证明会经历向后分岔。在原始模型和扩展模型中,利用李雅普诺夫函数理论和拉萨尔不变性原理表明,通过用质量作用发生率替代相关的标准发生率函数,可以消除向后分岔现象。换句话说,除了在登革热传播模型中确定向后分岔的存在之外,本研究还表明,在登革热疾病建模中使用标准发生率会导致登革热疾病的向后分岔现象。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验