Radiation Laboratory, Departments of Chemistry & Biochemistry, Chemical & Biomolecular Engineering, and Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556-0579, USA.
Nano Lett. 2010 Feb 10;10(2):577-83. doi: 10.1021/nl9035109.
Using reduced graphene oxide (RGO) as a two-dimensional support, we have succeeded in selective anchoring of semiconductor and metal nanoparticles at separate sites. Photogenerated electrons from UV-irradiated TiO(2) are transported across RGO to reduce silver ions into silver nanoparticles at a location distinct from the TiO(2) anchored site. The ability of RGO to store and shuttle electrons, as visualized via a stepwise electron transfer process, demonstrates its capability to serve as a catalyst nanomat and transfer electrons on demand to adsorbed species. These findings pave the way for the development of next generation catalyst systems and can spur advancements in graphene-based composites for chemical and biological sensors.
使用还原氧化石墨烯(RGO)作为二维支撑物,我们成功地将半导体和金属纳米粒子选择性地固定在不同的位置上。从 UV 照射的 TiO(2)中产生的光生电子通过 RGO 传输,将银离子还原成位于与 TiO(2)固定位置不同的银纳米粒子。RGO 通过逐步电子转移过程来存储和转移电子的能力,证明了它作为催化剂纳米材料的能力,可以根据需要将电子转移到吸附物种上。这些发现为开发下一代催化剂系统铺平了道路,并可以推动基于石墨烯的复合材料在化学和生物传感器方面的发展。