Department of Cellular and Physiological Sciences, University of British Columbia, 5358 Life Sciences Building, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada.
Endocrinology. 2010 Feb;151(2):502-12. doi: 10.1210/en.2009-0678. Epub 2010 Jan 7.
Insulin enhances the proliferation and survival of pancreatic beta-cells, but its mechanisms remain unclear. We hypothesized that Raf-1, a kinase upstream of both ERK and Bad, might be a critical target of insulin in beta-cells. To test this hypothesis, we treated human and mouse islets as well as MIN6 beta-cells with multiple insulin concentrations and examined putative downstream targets using immunoblotting, immunoprecipitation, quantitative fluorescent imaging, and cell death assays. Low doses of insulin rapidly activated Raf-1 by dephosphorylating serine 259 and phosphorylating serine 338 in human islets, mouse islets, and MIN6 cells. The phosphorylation of ERK by insulin was eliminated by exposure to a Raf inhibitor (GW5074) or transfection with a dominant-negative Raf-1 mutant. Insulin also enhanced the interaction between mitochondrial Raf-1 and Bcl-2 agonist of cell death (Bad), promoting Bad inactivation via its phosphorylation on serine 112. Insulin-stimulated ERK phosphorylation was abrogated by calcium chelation, calcineurin and calmodulin-dependent protein kinase II inhibitors, and Ned-19, a nicotinic acid adenine dinucleotide phosphate receptor (NAADPR) antagonist. Blocking Raf-1 and Ca(2+) signaling resulted in nonadditive beta-cell death. Autocrine insulin signaling partly accounted for the effects of glucose on ERK phosphorylation. Our results demonstrate that Raf-1 is a critical target of insulin in primary beta-cells. Activation of Raf-1 leads to both an ERK-dependent pathway that involves nicotinic acid adenine dinucleotide phosphate-sensitive Ca(2+) stores and Ca(2+)-dependent phosphorylation events, and an ERK-independent pathway that involves Bad inactivation at the mitochondria. Together our findings identify a novel insulin signaling pathway in beta-cells and shed light on insulin's antiapoptotic and mitogenic mechanisms.
胰岛素增强胰腺β细胞的增殖和存活,但其机制尚不清楚。我们假设 Raf-1,一种ERK 和 Bad 的上游激酶,可能是胰岛素在β细胞中的关键靶标。为了验证这一假设,我们用多种胰岛素浓度处理人胰岛、鼠胰岛和 MIN6β细胞,并通过免疫印迹、免疫沉淀、定量荧光成像和细胞死亡测定来检测潜在的下游靶标。低剂量胰岛素迅速激活 Raf-1,通过去磷酸化人胰岛、鼠胰岛和 MIN6 细胞中丝氨酸 259 和磷酸化丝氨酸 338。胰岛素通过 Raf 抑制剂(GW5074)或 Raf-1 显性负突变体转染消除了 ERK 的磷酸化。胰岛素还增强了线粒体 Raf-1 与细胞死亡的 Bcl-2 激动剂(Bad)之间的相互作用,通过其丝氨酸 112 的磷酸化促进 Bad 失活。胰岛素刺激的 ERK 磷酸化被钙螯合剂、钙调蛋白依赖性蛋白激酶 II 抑制剂和 Ned-19(烟酰胺腺嘌呤二核苷酸磷酸受体(NAADPR)拮抗剂)阻断。阻断 Raf-1 和 Ca2+信号导致β细胞非相加性死亡。自分泌胰岛素信号部分解释了葡萄糖对 ERK 磷酸化的影响。我们的结果表明,Raf-1 是原代β细胞中胰岛素的关键靶标。Raf-1 的激活导致 ERK 依赖性途径,涉及烟酰胺腺嘌呤二核苷酸磷酸敏感的 Ca2+储存和 Ca2+依赖性磷酸化事件,以及 ERK 非依赖性途径,涉及线粒体处 Bad 的失活。我们的研究结果确定了β细胞中一种新的胰岛素信号通路,并阐明了胰岛素的抗凋亡和促有丝分裂机制。