Dipartimento di Fisica, Università di Messina and IRCCS Neurolesi Bonino-Pulejo, I-98166, Messina, Italy.
J Phys Chem B. 2010 Feb 11;114(5):1870-8. doi: 10.1021/jp910038j.
Using nuclear magnetic resonance and quasi-elastic neutron scattering spectroscopic techniques, we obtain experimental evidence of a well-defined dynamic crossover temperature T(L) in supercooled water. We consider three different geometrical environments: (i) water confined in a nanotube (quasi-one-dimensional water), (ii) water in the first hydration layer of the lysozyme protein (quasi-two-dimensional water), and (iii) water in a mixture with methanol at a methanol molar fraction of x = 0.22 (quasi-three-dimensional water). The temperature predicted using a power law approach to analyze the bulk water viscosity in the super-Arrhenius regime defines the fragile-to-strong transition and the Stokes-Einstein relation breakdown recently observed in confined water. Our experiments show that these observed processes are independent of the system dimension d and are instead caused by the onset of an extended hydrogen-bond network that governs the dynamical properties of water as it approaches dynamic arrest.
使用核磁共振和准弹性中子散射光谱技术,我们在过冷水中获得了明确的动态跨越温度 T(L)的实验证据。我们考虑了三种不同的几何环境:(i)被限制在纳米管中的水(准一维水),(ii)溶菌酶蛋白质第一层水合层中的水(准二维水),以及(iii)与甲醇混合的水,甲醇摩尔分数为 x = 0.22(准三维水)。使用幂律方法分析过超 Arrhenius 区的体相水粘度来预测温度,定义了最近在受限水中观察到的脆性到强性转变和 Stokes-Einstein 关系的破裂。我们的实验表明,这些观察到的过程与系统维度 d 无关,而是由扩展氢键网络的出现引起的,该网络控制着水接近动态停止时的动力学特性。