Suppr超能文献

概率时间序列模型评估:几种方法的比较。

Probabilistic evaluation of time series models: a comparison of several approaches.

机构信息

Max-Planck-Institut fur Physik komplexer Systeme, Nothnitzer Str 38, 01187 Dresden, Germany.

出版信息

Chaos. 2009 Dec;19(4):043130. doi: 10.1063/1.3271343.

Abstract

Several methods are examined which allow to produce forecasts for time series in the form of probability assignments. The necessary concepts are presented, addressing questions such as how to assess the performance of a probabilistic forecast. A particular class of models, cluster weighted models (CWMs), is given particular attention. CWMs, originally proposed for deterministic forecasts, can be employed for probabilistic forecasting with little modification. Two examples are presented. The first involves estimating the state of (numerically simulated) dynamical systems from noise corrupted measurements, a problem also known as filtering. There is an optimal solution to this problem, called the optimal filter, to which the considered time series models are compared. (The optimal filter requires the dynamical equations to be known.) In the second example, we aim at forecasting the chaotic oscillations of an experimental bronze spring system. Both examples demonstrate that the considered time series models, and especially the CWMs, provide useful probabilistic information about the underlying dynamical relations. In particular, they provide more than just an approximation to the conditional mean.

摘要

几种方法被检验,这些方法允许以概率赋值的形式对时间序列进行预测。提出了必要的概念,解决了如何评估概率预测的性能等问题。特别关注了一类模型,聚类加权模型(CWMs)。CWMs 最初是为确定性预测而提出的,可以进行很少的修改以进行概率预测。本文介绍了两个例子。第一个例子涉及从噪声污染的测量中估计(数值模拟的)动力系统的状态,这个问题也称为滤波。这个问题有一个最优解,称为最优滤波器,与所考虑的时间序列模型进行了比较。(最优滤波器需要知道动力方程。)在第二个例子中,我们旨在预测实验青铜弹簧系统的混沌振荡。这两个例子都表明,所考虑的时间序列模型,特别是 CWMs,提供了有关潜在动力关系的有用概率信息。特别是,它们提供的不仅仅是条件均值的近似值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验