文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

从水溶液中用壳聚糖包被的磁性纳米粒子固定化酿酒酵母吸附铜(II)。

Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution.

机构信息

College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China.

出版信息

J Hazard Mater. 2010 May 15;177(1-3):676-82. doi: 10.1016/j.jhazmat.2009.12.084. Epub 2009 Dec 24.


DOI:10.1016/j.jhazmat.2009.12.084
PMID:20060211
Abstract

Immobilized Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles (SICCM) was applied as a new magnetic adsorbent for the adsorption of Cu(II) from aqueous solution. The prepared magnetic adsorbent was characterized by TEM, XRD and FTIR. TEM images indicated that S. cerevisiae was immobilized on the surface of chitosan-coated magnetic nanoparticles (CCM) successfully, and conglobation was not observed. The XRD pictures suggested that the Fe(3)O(4) nanoparticles were pure Fe(3)O(4) with a spinel structure and that the immobilizing process did not result in the phase change of Fe(3)O(4). Factors that influence the adsorption of Cu(II) were investigated, which included the initial pH of Cu(II) solution, initial concentration of Cu(II) solution and contact time. The optimum pH for Cu(II) absorption was 4.5. The highest removal efficiency of 96.8% was reached when the initial Cu(II) concentration was 60 mg L(-1), and the adsorption capacity was increased with the increase of initial concentration of Cu(II). In particular, SICCM was highly efficient for the fast adsorption of Cu(II) within the first 10 min, and adsorption equilibrium could be achieved in 1h. Equilibrium studies show that the data of Cu(II) adsorption follow the Langmuir model. The maximum adsorption capacity for Cu(II) was estimated to be 144.9 mg g(-1) with a Langmuir adsorption equilibrium constant of 0.0719 L mg(-1) at 301 K.

摘要

壳聚糖包覆磁性纳米粒子固定化酿酒酵母(SICCM)作为一种新型的磁性吸附剂,用于从水溶液中吸附 Cu(II)。通过 TEM、XRD 和 FTIR 对制备的磁性吸附剂进行了表征。TEM 图像表明,S. cerevisiae 成功地固定在壳聚糖包覆的磁性纳米粒子(CCM)的表面上,没有观察到聚集。XRD 图谱表明,Fe(3)O(4)纳米粒子为纯尖晶石结构的 Fe(3)O(4),且固定化过程不会导致 Fe(3)O(4)的相变化。考察了影响 Cu(II)吸附的因素,包括 Cu(II)溶液的初始 pH 值、Cu(II)溶液的初始浓度和接触时间。Cu(II)吸收的最佳 pH 值为 4.5。当初始 Cu(II)浓度为 60mg/L 时,去除效率最高可达 96.8%,吸附容量随初始 Cu(II)浓度的增加而增加。特别是,SICCM 对 Cu(II)的快速吸附在最初的 10 分钟内非常有效,1 小时内即可达到吸附平衡。平衡研究表明,Cu(II)吸附数据符合 Langmuir 模型。在 301 K 时,Cu(II)的最大吸附容量估计为 144.9mg/g,Langmuir 吸附平衡常数为 0.0719L/mg。

相似文献

[1]
Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution.

J Hazard Mater. 2009-12-24

[2]
Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with alpha-ketoglutaric acid.

J Colloid Interface Sci. 2009-2-1

[3]
Dispersion of chitosan on perlite for enhancement of copper(II) adsorption capacity.

J Hazard Mater. 2008-4-1

[4]
Removal of Cu(II) from aqueous solutions using chemically modified chitosan.

J Hazard Mater. 2009-10-30

[5]
Adsorption character for removal Cu(II) by magnetic Cu(II) ion imprinted composite adsorbent.

J Hazard Mater. 2008-10-1

[6]
Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads.

Bioresour Technol. 2009-1

[7]
Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent.

J Hazard Mater. 2009-4-15

[8]
Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions.

J Colloid Interface Sci. 2005-3-15

[9]
Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies.

J Hazard Mater. 2010-10-15

[10]
Biosorption of Cu(II) ions onto the litter of natural trembling poplar forest.

J Hazard Mater. 2008-2-28

引用本文的文献

[1]
Chitosan-coated manganese ferrite nanoparticles enhanced Rhodotorula toruloides carotenoid production.

Bioprocess Biosyst Eng. 2024-11

[2]
Effective fabrication and characterization of eco-friendly nano particles composite for adsorption Cd (II) and Cu (II) ions from aqueous solutions using modelling studies.

Sci Rep. 2024-5-23

[3]
Recent Advances in Applications of Oxidases and Peroxidases Polymer-Based Enzyme Biocatalysts in Sensing and Wastewater Treatment: A Review.

Polymers (Basel). 2023-8-21

[4]
Synthesis and Characterization of SPIONs Encapsulating Polydopamine Nanoparticles and Their Test for Aqueous Cu Ion Removal.

Materials (Basel). 2023-2-17

[5]
Adsorption process and mechanism of heavy metal ions by different components of cells, using yeast () and Cu as biosorption models.

RSC Adv. 2021-5-11

[6]
Functionalized Magnetic Nanomaterials in Agricultural Applications.

Nanomaterials (Basel). 2021-11-18

[7]
Polysaccharides as Support for Microbial Biomass-Based Adsorbents with Applications in Removal of Heavy Metals and Dyes.

Polymers (Basel). 2021-8-27

[8]
An Innovative Method of Converting Ferrous Mill Scale Wastes into Superparamagnetic Nanoadsorbents for Water Decontamination.

Materials (Basel). 2021-5-13

[9]
Immobilized microbial biosorbents for heavy metals removal.

Eng Life Sci. 2018-8-20

[10]
Insights of CMNPs in water pollution control.

IET Nanobiotechnol. 2019-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索