Department of Radiology, University of Iowa, 200 Hawkins Dr., Iowa City, IA 52242, USA.
Comput Methods Programs Biomed. 2010 May;98(2):204-13. doi: 10.1016/j.cmpb.2009.12.005. Epub 2010 Jan 8.
We developed fully automated software for dynamic susceptibility contrast (DSC) MR perfusion-weighted imaging (PWI) to efficiently and reliably derive critical hemodynamic information for acute stroke treatment decisions. Brain MR PWI was performed in 80 consecutive patients with acute nonlacunar ischemic stroke within 24h after onset of symptom from January 2008 to August 2009. These studies were automatically processed to generate hemodynamic parameters that included cerebral blood flow and cerebral blood volume, and the mean transit time (MTT). To develop reliable software for PWI analysis, we used computationally robust algorithms including the piecewise continuous regression method to determine bolus arrival time (BAT), log-linear curve fitting, arrival time independent deconvolution method and sophisticated motion correction methods. An optimal arterial input function (AIF) search algorithm using a new artery-likelihood metric was also developed. Anatomical locations of the automatically determined AIF were reviewed and validated. The automatically computed BAT values were statistically compared with estimated BAT by a single observer. In addition, gamma-variate curve-fitting errors of AIF and inter-subject variability of AIFs were analyzed. Lastly, two observes independently assessed the quality and area of hypoperfusion mismatched with restricted diffusion area from motion corrected MTT maps and compared that with time-to-peak (TTP) maps using the standard approach. The AIF was identified within an arterial branch and enhanced areas of perfusion deficit were visualized in all evaluated cases. Total processing time was 10.9+/-2.5s (mean+/-s.d.) without motion correction and 267+/-80s (mean+/-s.d.) with motion correction on a standard personal computer. The MTT map produced with our software adequately estimated brain areas with perfusion deficit and was significantly less affected by random noise of the PWI when compared with the TTP map. Results of image quality assessment by two observers revealed that the MTT maps exhibited superior quality over the TTP maps (88% good rating of MTT as compared to 68% of TTP). Our software allowed fully automated deconvolution analysis of DSC PWI using proven efficient algorithms that can be applied to acute stroke treatment decisions. Our streamlined method also offers promise for further development of automated quantitative analysis of the ischemic penumbra.
我们开发了用于动态对比磁共振灌注加权成像(DSC-PWI)的全自动软件,以高效、可靠地获取急性卒中治疗决策所需的关键血流动力学信息。2008 年 1 月至 2009 年 8 月,对 80 例起病 24 小时内的急性非腔隙性缺血性卒中患者进行了脑磁共振 PWI。这些研究被自动处理,以生成包括脑血流和脑血容量以及平均通过时间(MTT)在内的血流动力学参数。为了开发可靠的 PWI 分析软件,我们使用了计算稳健的算法,包括分段连续回归方法来确定对比剂到达时间(BAT)、对数线性曲线拟合、到达时间独立解卷积方法和复杂的运动校正方法。还开发了一种使用新的动脉似然度度量的最佳动脉输入函数(AIF)搜索算法。自动确定的 AIF 的解剖位置经过了回顾和验证。自动计算的 BAT 值与单个观察者估计的 BAT 值进行了统计学比较。此外,还分析了 AIF 的伽马变量曲线拟合误差和 AIF 的受试者间变异性。最后,两位观察者独立评估了运动校正后的 MTT 图上的低灌注与受限扩散区不匹配的质量和面积,并使用标准方法与 TTP 图进行了比较。在所有评估的病例中,在动脉分支内识别出 AIF,并可视化了灌注缺损增强区域。无运动校正时的总处理时间为 10.9+/-2.5s(均值+/-标准差),有运动校正时为 267+/-80s(均值+/-标准差),在标准个人计算机上完成。与 TTP 图相比,我们的软件生成的 MTT 图充分估计了有灌注缺损的脑区,受 PWI 随机噪声的影响较小。两位观察者的图像质量评估结果表明,MTT 图的质量优于 TTP 图(88%的 MTT 评为良好,而 TTP 图为 68%)。我们的软件允许使用经过验证的高效算法对 DSC-PWI 进行全自动解卷积分析,可应用于急性卒中治疗决策。我们的简化方法也为进一步开发自动定量分析缺血半影区提供了希望。