Suppr超能文献

利用连续 PET/CT 成像进行淋巴瘤治疗反应的计算机辅助定量评估。

Computer-assisted quantitative evaluation of therapeutic responses for lymphoma using serial PET/CT imaging.

机构信息

The Center for Bioengineering and Informatics, The Methodist Hospital and The Methodist Hospital Research Institute, Weill Medical College of Cornell University, Houston, TX 77030, USA.

出版信息

Acad Radiol. 2010 Apr;17(4):479-88. doi: 10.1016/j.acra.2009.10.026. Epub 2010 Jan 12.

Abstract

RATIONALE AND OBJECTIVES

Molecular imaging modalities such as positron emission tomography (PET)/computed tomography (CT) have emerged as an essential diagnostic tool for monitoring treatment response in lymphoma patients. However, quantitative assessment of treatment outcomes from serial scans is often difficult, laborious, and time consuming. Automatic quantization of longitudinal PET/CT scans provides more efficient and comprehensive quantitative evaluation of cancer therapeutic responses. This study develops and validates a Longitudinal Image Navigation and Analysis (LINA) system for this quantitative imaging application.

MATERIALS AND METHODS

LINA is designed to automatically construct longitudinal correspondence along serial images of individual patients for changes in tumor volume and metabolic activity via regions of interest (ROI) segmented from a given time point image and propagated into the space of all follow-up PET/CT images. We applied LINA retrospectively to nine lymphoma patients enrolled in an immunotherapy clinical trial conducted at the Center for Cell and Gene Therapy, Baylor College of Medicine. This methodology was compared to the readout by a diagnostic radiologist, who manually measured the ROI metabolic activity as defined by the maximal standardized uptake value (SUVmax).

RESULTS

Quantitative results showed that the measured SUVs obtained from automatic mapping are as accurate as semiautomatic segmentation and consistent with clinical examination findings. The average of relative squared differences of SUVmax between automatic and semiautomatic segmentation was found to be 0.02.

CONCLUSIONS

These data support a role for LINA in facilitating quantitative analysis of serial PET/CT images to efficiently assess cancer treatment responses in a comprehensive and intuitive software platform.

摘要

原理与目的

正电子发射断层扫描(PET)/计算机断层扫描(CT)等分子成像方式已成为监测淋巴瘤患者治疗反应的重要诊断工具。然而,从连续扫描中定量评估治疗效果往往既困难又耗时费力。对纵向 PET/CT 扫描进行自动定量可以更有效地全面评估癌症治疗反应。本研究开发并验证了一种用于这种定量成像应用的纵向图像导航和分析(LINA)系统。

材料与方法

LINA 旨在通过从给定时间点图像分割的感兴趣区域(ROI)自动构建个体患者的序列图像的纵向对应关系,以测量肿瘤体积和代谢活性的变化,并将其传播到所有后续 PET/CT 图像的空间中。我们回顾性地将 LINA 应用于在贝勒医学院细胞与基因治疗中心进行的免疫治疗临床试验中招募的 9 名淋巴瘤患者。该方法与诊断放射科医生的读数进行了比较,后者通过最大标准化摄取值(SUVmax)手动测量 ROI 的代谢活性。

结果

定量结果表明,从自动映射获得的测量 SUV 值与半自动分割一样准确,并且与临床检查结果一致。SUVmax 的自动和半自动分割之间的平均相对平方差异为 0.02。

结论

这些数据支持 LINA 在促进连续 PET/CT 图像的定量分析以在全面直观的软件平台中评估癌症治疗反应方面发挥作用。

相似文献

1
Computer-assisted quantitative evaluation of therapeutic responses for lymphoma using serial PET/CT imaging.
Acad Radiol. 2010 Apr;17(4):479-88. doi: 10.1016/j.acra.2009.10.026. Epub 2010 Jan 12.
3
Phantom validation of coregistration of PET and CT for image-guided radiotherapy.
Med Phys. 2004 May;31(5):1083-92. doi: 10.1118/1.1688041.
5
One registration multi-atlas-based pseudo-CT generation for attenuation correction in PET/MRI.
Eur J Nucl Med Mol Imaging. 2016 Oct;43(11):2021-35. doi: 10.1007/s00259-016-3422-5. Epub 2016 Jun 3.
6
Real-time volume rendering visualization of dual-modality PET/CT images with interactive fuzzy thresholding segmentation.
IEEE Trans Inf Technol Biomed. 2007 Mar;11(2):161-9. doi: 10.1109/titb.2006.875669.
7
Dual-modality brain PET-CT image segmentation based on adaptive use of functional and anatomical information.
Comput Med Imaging Graph. 2012 Jan;36(1):47-53. doi: 10.1016/j.compmedimag.2011.06.004. Epub 2011 Jun 29.
9
Automated PET/CT brain registration for accurate attenuation correction.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5805-8. doi: 10.1109/IEMBS.2009.5335188.
10
Automated 3D elastic registration for improving tumor localization in whole-body PET-CT from combined scanner.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2799-802. doi: 10.1109/IEMBS.2006.259236.

引用本文的文献

1
PET/CT assessment in follicular lymphoma using standardized criteria: central review in the PRIMA study.
Eur J Nucl Med Mol Imaging. 2014 Mar;41(3):408-15. doi: 10.1007/s00259-013-2441-8. Epub 2014 Jan 17.
2
Molecular MR imaging of neovascular progression in the Vx2 tumor with αvβ3-targeted paramagnetic nanoparticles.
Radiology. 2013 Aug;268(2):470-80. doi: 10.1148/radiol.13120789. Epub 2013 Jun 14.
4
Automatic detection and classification of nasopharyngeal carcinoma on PET/CT with support vector machine.
Int J Comput Assist Radiol Surg. 2012 Jul;7(4):635-46. doi: 10.1007/s11548-011-0669-y. Epub 2012 Jan 4.

本文引用的文献

1
Joint registration and segmentation of serial lung CT images for image-guided lung cancer diagnosis and therapy.
Comput Med Imaging Graph. 2010 Jan;34(1):55-60. doi: 10.1016/j.compmedimag.2009.05.007. Epub 2009 Aug 25.
3
PET/CT for therapy response assessment in lymphoma.
J Nucl Med. 2009 May;50 Suppl 1:21S-30S. doi: 10.2967/jnumed.108.057190. Epub 2009 Apr 20.
4
Assessing tumor response to therapy.
J Nucl Med. 2009 May;50 Suppl 1:1S-10S. doi: 10.2967/jnumed.108.057174. Epub 2009 Apr 20.
5
Comparison of CT, PET, and PET/CT for staging of patients with indolent non-Hodgkin's lymphoma.
Mol Imaging Biol. 2009 Jul-Aug;11(4):269-74. doi: 10.1007/s11307-009-0200-9. Epub 2009 Mar 27.
6
Location registration and recognition (LRR) for longitudinal evaluation of corresponding regions in CT volumes.
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):989-97. doi: 10.1007/978-3-540-85990-1_119.
8
PET/CT fusion scan enhances CT staging in patients with pancreatic neoplasms.
Ann Surg Oncol. 2008 Sep;15(9):2465-71. doi: 10.1245/s10434-008-9992-0. Epub 2008 Jun 13.
9
Cancer statistics, 2008.
CA Cancer J Clin. 2008 Mar-Apr;58(2):71-96. doi: 10.3322/CA.2007.0010. Epub 2008 Feb 20.
10
Non-Hodgkin lymphoma: retrospective study on the cost-effectiveness of early treatment response assessment by FDG-PET.
Eur J Nucl Med Mol Imaging. 2008 Jun;35(6):1074-80. doi: 10.1007/s00259-007-0690-0. Epub 2008 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验