Suppr超能文献

基于 MRI 衍生参数的主动脉根部动态有限元分析。

Dynamic finite element analysis of the aortic root from MRI-derived parameters.

机构信息

Department of Bioengineering, Politecnico di Milano, Via Golgi 39, 20133 Milano, Italy.

出版信息

Med Eng Phys. 2010 Mar;32(2):212-21. doi: 10.1016/j.medengphy.2009.12.003. Epub 2010 Jan 8.

Abstract

An understanding of aortic root biomechanics is pivotal for the optimisation of surgical procedures aimed at restoring normal root function in pathological subjects. For this purpose, computational models can provide important information, as long as they realistically capture the main anatomical and functional features of the aortic root. Here we present a novel and realistic finite element (FE) model of the physiological aortic root, which simulates its function during the entire cardiac cycle. Its geometry is based on magnetic resonance imaging (MRI) data obtained from 10 healthy subjects and accounts for the geometrical differences between the leaflet-sinus units. Morphological realism is combined with the modelling of the leaflets' non-linear and anisotropic mechanical response, in conjunction with dynamic boundary conditions. The results show that anatomical differences between leaflet-sinus units cause differences in stress and strain patterns. These are notably higher for the leaflets and smaller for the sinuses. For the maximum transvalvular pressure value, maximum principal stresses on the leaflets are equal to 759, 613 and 603 kPa on the non-coronary, right and left leaflet, respectively. For the maximum aortic pressure, average maximum principal stresses values are equal to 118, 112 and 111 kPa on the right, non-coronary and left sinus, respectively. Although liable of further improvements, the model seems to reliably reproduce the behaviour of the real aortic root: the model's leaflet stretches, leaflet coaptation lengths and commissure motions, as well as the timings of aortic leaflet closures and openings, all matched with the experimental findings reported in the literature.

摘要

了解主动脉根部生物力学对于优化旨在恢复病理性主动脉根部正常功能的手术过程至关重要。为此,计算模型可以提供重要信息,只要它们真实地捕捉到主动脉根部的主要解剖和功能特征。在这里,我们提出了一种新颖而真实的生理主动脉根部有限元(FE)模型,该模型模拟了整个心动周期中的主动脉根部功能。其几何形状基于从 10 个健康受试者获得的磁共振成像(MRI)数据,并考虑了瓣窦单元之间的几何差异。形态逼真与瓣叶非线性和各向异性力学响应建模相结合,以及动态边界条件。结果表明,瓣窦单元之间的解剖差异导致了应力和应变模式的差异。瓣叶的这些差异明显更高,而窦的差异则更小。对于最大跨瓣压值,非冠状动脉瓣、右瓣和左瓣上瓣叶的最大主应力分别为 759、613 和 603 kPa。对于最大主动脉压,右窦、非冠状动脉窦和左窦上的平均最大主应力值分别为 118、112 和 111 kPa。尽管还有进一步改进的空间,但该模型似乎能够可靠地再现真实主动脉根部的行为:模型的瓣叶伸展、瓣叶对合长度和连合运动,以及主动脉瓣叶关闭和开放的时机,均与文献中报道的实验结果相匹配。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验