Suppr超能文献

对恶性肿瘤的免疫反应。

Immune responses to malignancies.

机构信息

University of Pittsburgh Cancer Institute and Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.

出版信息

J Allergy Clin Immunol. 2010 Feb;125(2 Suppl 2):S272-83. doi: 10.1016/j.jaci.2009.09.045. Epub 2010 Jan 12.

Abstract

Immune responses to tumor-associated antigens (TAs) are often detectable in tumor-bearing hosts, but they fail to eliminate malignant cells or prevent the development of metastases. Patients with cancer generate robust immune responses to infectious agents (bacteria and viruses) perceived as a "danger signal" but only ineffective weak responses to TAs, which are considered as "self." This fundamental difference in responses to self versus nonself is further magnified by the ability of tumors to subvert the host immune system. Tumors induce dysfunction and apoptosis in CD8(+) antitumor effector cells and promote expansion of regulatory T cells, myeloid-derived suppressor cells, or both, which downregulate antitumor immunity, allowing tumors to escape from the host immune system. The tumor escape is mediated by several distinct molecular mechanisms. Recent insights into these mechanisms encourage expectations that a more effective control of tumor-induced immune dysfunction will be developed in the near future. Novel strategies for immunotherapy of cancer are aimed at the protection and survival of antitumor effector cells and also of central memory T cells in the tumor microenvironment.

摘要

肿瘤相关抗原 (TAs) 的免疫反应通常在肿瘤宿主中可检测到,但它们未能消除恶性细胞或防止转移的发展。癌症患者对被视为“危险信号”的感染因子(细菌和病毒)产生强烈的免疫反应,但对被视为“自身”的 TAs 仅产生无效的弱反应。这种对自我与非自我反应的根本差异进一步被肿瘤削弱宿主免疫系统的能力放大。肿瘤诱导 CD8(+) 抗肿瘤效应细胞的功能障碍和凋亡,并促进调节性 T 细胞、髓源性抑制细胞或两者的扩增,下调抗肿瘤免疫,使肿瘤逃脱宿主免疫系统的控制。肿瘤逃避是由几种不同的分子机制介导的。对这些机制的最新了解,让人期待在不久的将来能够更好地控制肿瘤诱导的免疫功能障碍。癌症免疫治疗的新策略旨在保护和维持肿瘤微环境中的抗肿瘤效应细胞和中央记忆 T 细胞的存活。

相似文献

1
Immune responses to malignancies.
J Allergy Clin Immunol. 2010 Feb;125(2 Suppl 2):S272-83. doi: 10.1016/j.jaci.2009.09.045. Epub 2010 Jan 12.
2
22. Immune responses to malignancies.
J Allergy Clin Immunol. 2003 Feb;111(2 Suppl):S677-86. doi: 10.1067/mai.2003.90.
3
Immunotherapy of cancer: reprogramming tumor-immune crosstalk.
Clin Dev Immunol. 2012;2012:760965. doi: 10.1155/2012/760965. Epub 2012 Oct 11.
4
Are Conventional Type 1 Dendritic Cells Critical for Protective Antitumor Immunity and How?
Front Immunol. 2019 Feb 12;10:9. doi: 10.3389/fimmu.2019.00009. eCollection 2019.
6
Signaling defects in anti-tumor T cells.
Immunol Rev. 2008 Apr;222:192-205. doi: 10.1111/j.1600-065X.2008.00606.x.
7
Targeting inhibitory pathways in cancer immunotherapy.
Curr Opin Immunol. 2010 Jun;22(3):385-90. doi: 10.1016/j.coi.2010.04.005. Epub 2010 May 12.
8
Immuno-oncology: understanding the function and dysfunction of the immune system in cancer.
Ann Oncol. 2012 Sep;23 Suppl 8(Suppl 8):viii6-9. doi: 10.1093/annonc/mds256.
9
Tolerance and cancer: mechanisms of tumor evasion and strategies for breaking tolerance.
J Clin Oncol. 2004 Mar 15;22(6):1136-51. doi: 10.1200/JCO.2004.10.041.
10
Tumour escape from the immune response: the last hurdle for successful immunotherapy of cancer?
Cancer Immunol Immunother. 1999 Oct;48(7):343-5. doi: 10.1007/s002620050584.

引用本文的文献

1
Decoding MHC loss: Molecular mechanisms and implications for immune resistance in cancer.
Clin Transl Med. 2025 Jul;15(7):e70403. doi: 10.1002/ctm2.70403.
3
The Role of Exosomes in Cancer Progression and Therapy.
Biology (Basel). 2025 Jan 1;14(1):27. doi: 10.3390/biology14010027.
4
Therapeutic approaches to modulate the immune microenvironment in gliomas.
NPJ Precis Oncol. 2024 Oct 23;8(1):241. doi: 10.1038/s41698-024-00717-4.
6
Tumor-derived Exosomes and Antitumor Immunity.
J Immunol. 2024 Oct 1;213(7):923-931. doi: 10.4049/jimmunol.2400335.
7
Tumor regression following autologous tumor lysate-loaded dendritic cell vaccination immunotherapy: illustrative case.
J Neurosurg Case Lessons. 2024 Jul 8;8(2). doi: 10.3171/CASE24112. Print 2024 Jul 1.
8
Expression patterns of novel immunotherapy targets in intermediate- and high-grade lung neuroendocrine neoplasms.
Cancer Immunol Immunother. 2024 May 2;73(6):114. doi: 10.1007/s00262-024-03704-7.
9
Ferroptosis is an effective strategy for cancer therapy.
Med Oncol. 2024 Apr 23;41(5):124. doi: 10.1007/s12032-024-02317-5.
10
Immune Escape Strategies in Head and Neck Cancer: Evade, Resist, Inhibit, Recruit.
Cancers (Basel). 2024 Jan 11;16(2):312. doi: 10.3390/cancers16020312.

本文引用的文献

1
Lymphocyte homeostasis and the antitumor immune response.
Expert Rev Clin Immunol. 2005 Sep;1(3):369-78. doi: 10.1586/1744666X.1.3.369.
2
Increased ectonucleotidase expression and activity in regulatory T cells of patients with head and neck cancer.
Clin Cancer Res. 2009 Oct 15;15(20):6348-57. doi: 10.1158/1078-0432.CCR-09-1143. Epub 2009 Oct 13.
4
PD1 blockade reverses the suppression of melanoma antigen-specific CTL by CD4+ CD25(Hi) regulatory T cells.
Int Immunol. 2009 Sep;21(9):1065-77. doi: 10.1093/intimm/dxp072. Epub 2009 Aug 3.
5
IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway.
J Exp Med. 2009 Jul 6;206(7):1457-64. doi: 10.1084/jem.20090207. Epub 2009 Jun 29.
6
The IL-17/IL-23 axis of inflammation in cancer: friend or foe?
Curr Opin Investig Drugs. 2009 Jun;10(6):543-9.
7
Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments.
Blood. 2009 Aug 6;114(6):1141-9. doi: 10.1182/blood-2009-03-208249. Epub 2009 May 21.
9
Identification of IL-17-producing FOXP3+ regulatory T cells in humans.
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4793-8. doi: 10.1073/pnas.0900408106. Epub 2009 Mar 9.
10
Coordination of intratumoral immune reaction and human colorectal cancer recurrence.
Cancer Res. 2009 Mar 15;69(6):2685-93. doi: 10.1158/0008-5472.CAN-08-2654. Epub 2009 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验