Suppr超能文献

经典枫糖尿症与脑发育:管理原则与配方设计。

Classical maple syrup urine disease and brain development: principles of management and formula design.

机构信息

Clinic for Special Children, Strasburg, PA 17579, USA.

出版信息

Mol Genet Metab. 2010 Apr;99(4):333-45. doi: 10.1016/j.ymgme.2009.12.007. Epub 2010 Jan 12.

Abstract

Branched-chain ketoacid dehydrogenase deficiency results in complex and volatile metabolic derangements that threaten brain development. Treatment for classical maple syrup urine disease (MSUD) should address this underlying physiology while also protecting children from nutrient deficiencies. Based on a 20-year experience managing 79 patients, we designed a study formula to (1) optimize transport of seven amino acids (Tyr, Trp, His, Met, Thr, Gln, Phe) that compete with branched-chain amino acids (BCAAs) for entry into the brain via a common transporter (LAT1), (2) compensate for episodic depletions of glutamine, glutamate, and alanine caused by reverse transamination, and (3) correct deficiencies of omega-3 essential fatty acids, zinc, and selenium widespread among MSUD patients. The formula was enriched with LAT1 amino acid substrates, glutamine, alanine, zinc, selenium, and alpha-linolenic acid (18:3n-3). Fifteen Old Order Mennonite children were started on study formula between birth and 34 months of age and seen at least monthly in the office. Amino acid levels were checked once weekly and more often during illnesses. All children grew and developed normally over a period of 14-33 months. Energy demand, leucine tolerance, and protein accretion were tightly linked during periods of normal growth. Rapid shifts to net protein degradation occurred during illnesses. At baseline, most LAT1 substrates varied inversely with plasma leucine, and their calculated rates of brain uptake were 20-68% below normal. Treatment with study formula increased plasma concentrations of LAT1 substrates and normalized their calculated uptakes into the nervous system. Red cell membrane omega-3 polyunsaturated fatty acids and serum zinc and selenium levels increased on study formula. However, selenium and docosahexaenoic acid (22:6n-3) levels remained below normal. During the study period, hospitalizations decreased from 0.35 to 0.14 per patient per year. There were 28 hospitalizations managed with MSUD hyperalimentation solution; 86% were precipitated by common infections, especially vomiting and gastroenteritis. The large majority of catabolic illnesses were managed successfully at home using 'sick-day' formula and frequent amino acid monitoring. We conclude that the study formula is safe and effective for the treatment of classical MSUD. In principle, dietary enrichment protects the brain against deficiency of amino acids used for protein accretion, neurotransmitter synthesis, and methyl group transfer. Although the pathophysiology of MSUD can be addressed through rational formula design, this does not replace the need for vigilant clinical monitoring, frequent measurement of the complete amino acid profile, and ongoing dietary adjustments that match nutritional intake to the metabolic demands of growth and illness.

摘要

支链酮酸脱氢酶缺乏症会导致复杂且不稳定的代谢紊乱,从而威胁大脑发育。经典枫糖尿症(MSUD)的治疗应针对这种潜在的生理状况,同时还要防止儿童出现营养缺乏。基于 20 年管理 79 名患者的经验,我们设计了一种研究配方,以(1)优化通过 LAT1 共同转运体进入大脑的七种氨基酸(Tyr、Trp、His、Met、Thr、Gln、Phe)的转运(2)补偿反向转氨引起的谷氨酰胺、谷氨酸和丙氨酸的间歇性耗竭,以及(3)纠正 MSUD 患者普遍存在的ω-3 必需脂肪酸、锌和硒的缺乏。配方中富含 LAT1 氨基酸底物、谷氨酰胺、丙氨酸、锌、硒和α-亚麻酸(18:3n-3)。15 名旧秩序门诺派儿童在出生至 34 个月期间开始使用研究配方,并在办公室每月至少就诊一次。每周检查一次氨基酸水平,在患病期间更频繁地检查。所有儿童在 14-33 个月期间正常生长发育。在正常生长期间,能量需求、亮氨酸耐受性和蛋白质积累密切相关。在患病期间,会迅速转为净蛋白降解。在基线时,大多数 LAT1 底物与血浆亮氨酸呈反比变化,其计算的脑摄取率比正常值低 20-68%。用研究配方治疗可增加 LAT1 底物的血浆浓度,并使它们进入神经系统的摄取正常化。红细胞膜 ω-3 多不饱和脂肪酸以及血清锌和硒水平在使用研究配方后增加。然而,硒和二十二碳六烯酸(22:6n-3)水平仍低于正常值。在研究期间,每位患者每年的住院率从 0.35 降至 0.14。有 28 次住院是用 MSUD 高营养溶液治疗的;86%是由常见感染引起的,尤其是呕吐和肠胃炎。大多数分解代谢疾病在家中使用“患病日”配方和频繁的氨基酸监测即可成功管理。我们得出结论,研究配方治疗经典 MSUD 是安全有效的。原则上,饮食强化可防止大脑缺乏用于蛋白质积累、神经递质合成和甲基转移的氨基酸。尽管通过合理的配方设计可以解决 MSUD 的病理生理学问题,但这并不能替代警惕的临床监测、频繁测量完整的氨基酸谱以及不断进行饮食调整,使营养摄入与生长和疾病的代谢需求相匹配。

相似文献

1
Classical maple syrup urine disease and brain development: principles of management and formula design.
Mol Genet Metab. 2010 Apr;99(4):333-45. doi: 10.1016/j.ymgme.2009.12.007. Epub 2010 Jan 12.
3
Diagnosis and treatment of maple syrup disease: a study of 36 patients.
Pediatrics. 2002 Jun;109(6):999-1008. doi: 10.1542/peds.109.6.999.
4
Branched-chain α-ketoacid dehydrogenase deficiency (maple syrup urine disease): Treatment, biomarkers, and outcomes.
Mol Genet Metab. 2020 Mar;129(3):193-206. doi: 10.1016/j.ymgme.2020.01.006. Epub 2020 Jan 16.
5
Living related versus deceased donor liver transplantation for maple syrup urine disease.
Mol Genet Metab. 2016 Mar;117(3):336-43. doi: 10.1016/j.ymgme.2016.01.005. Epub 2016 Jan 12.
6
Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease.
Brain. 2009 Apr;132(Pt 4):903-18. doi: 10.1093/brain/awp024. Epub 2009 Mar 17.
8
Glucose and alanine metabolism in children with maple syrup urine disease.
J Clin Invest. 1978 Aug;62(2):398-405. doi: 10.1172/JCI109141.

引用本文的文献

1
Thiamine-responsive maple syrup urine disease missed by newborn screen: A case report.
Mol Genet Metab Rep. 2025 Aug 7;44:101244. doi: 10.1016/j.ymgmr.2025.101244. eCollection 2025 Sep.
4
6
Exploring molecular spectrum in thai patients with maple syrup urine disease: unveiling a common variant.
Orphanet J Rare Dis. 2024 Oct 25;19(1):396. doi: 10.1186/s13023-024-03411-7.
7
Memantine Improves Memory and Neurochemical Damage in a Model of Maple Syrup Urine Disease.
Neurochem Res. 2024 Mar;49(3):758-770. doi: 10.1007/s11064-023-04072-x. Epub 2023 Dec 16.
8
Selenium in Infants and Preschool Children Nutrition: A Literature Review.
Nutrients. 2023 Nov 3;15(21):4668. doi: 10.3390/nu15214668.
10
Melatonin improves behavioral parameters and oxidative stress in zebrafish submitted to a leucine-induced MSUD protocol.
Metab Brain Dis. 2023 Aug;38(6):2105-2114. doi: 10.1007/s11011-023-01220-8. Epub 2023 Apr 26.

本文引用的文献

1
Genetics, medicine, and the Plain people.
Annu Rev Genomics Hum Genet. 2009;10:513-36. doi: 10.1146/annurev-genom-082908-150040.
2
Zinc: the brain's dark horse.
Synapse. 2009 Nov;63(11):1029-49. doi: 10.1002/syn.20683.
3
Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease.
Brain. 2009 Apr;132(Pt 4):903-18. doi: 10.1093/brain/awp024. Epub 2009 Mar 17.
4
Role of docosahexaenoic acid in maternal and child mental health.
Am J Clin Nutr. 2009 Mar;89(3):958S-962S. doi: 10.3945/ajcn.2008.26692F. Epub 2009 Jan 28.
5
Nutritional and dietary influences on attention deficit hyperactivity disorder.
Nutr Rev. 2008 Oct;66(10):558-68. doi: 10.1111/j.1753-4887.2008.00107.x.
6
Cognitive functions and the antioxidant system in phenylketonuric patients.
Neuropsychology. 2008 Jul;22(4):426-31. doi: 10.1037/0894-4105.22.4.426.
7
[Advances in the diagnosis and treatment of maple syrup urine disease: experience in Galicia (Spain)].
An Pediatr (Barc). 2007 Oct;67(4):337-43. doi: 10.1016/s1695-4033(07)70651-3.
8
Omega-3 fatty acids as treatments for mental illness: which disorder and which fatty acid?
Lipids Health Dis. 2007 Sep 18;6:21. doi: 10.1186/1476-511X-6-21.
10
Prevention of brain disease from severe 5,10-methylenetetrahydrofolate reductase deficiency.
Mol Genet Metab. 2007 Jun;91(2):165-75. doi: 10.1016/j.ymgme.2007.02.012. Epub 2007 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验