Suppr超能文献

鉴定、表征和生物合成担子菌侧耳属真菌子实体中的一种新型 N-聚糖修饰。

Identification, characterization, and biosynthesis of a novel N-glycan modification in the fruiting body of the basidiomycete Coprinopsis cinerea.

机构信息

Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland.

出版信息

J Biol Chem. 2010 Apr 2;285(14):10715-23. doi: 10.1074/jbc.M109.076075. Epub 2010 Jan 8.

Abstract

Coprinopsis cinerea is a model organism for fruiting body development in homobasidiomycetes. Here, we focused on N-linked oligosaccharides (NLO) of cell wall proteins in the hyphae of two developmental stages, vegetative mycelium and fruiting body. High mannose-type glycans were the most commonly found structures. In addition, we observed a novel glycan, predominantly present in fruiting body. This oligosaccharide structure was of the high mannose type with at least five mannoses and a bisecting alpha1-4 N-acetylglucosamine (GlcNAc) at the beta-mannose of the N-glycan core. The transferase responsible for this modification, CcGnt1 (C. cinerea GlcNAc transferase 1), was identified and expressed in insect cells. In vitro activity of CcGnt1 was demonstrated. This novel glycosyltransferase belongs to the glycosyltransferase family 8 (GT8) and is predicted to be a type II membrane protein. Expression of the CcGnt1 locus was up-regulated in fruiting body, but down-regulation of expression by means of RNAi decreased the level of bisected NLO; however had no apparent effect on fruiting body formation.

摘要

灰花纹鹅膏是同担子菌中用于研究子实体发育的模式生物。在这里,我们主要关注菌丝体两个发育阶段(营养菌丝体和子实体)细胞壁蛋白的 N-连接寡糖(NLO)。高甘露糖型聚糖是最常见的结构。此外,我们还观察到一种新型聚糖,主要存在于子实体中。这种寡糖结构为高甘露糖型,至少含有五个甘露糖,在 N-聚糖核心的β-甘露糖上有一个双分支的α1-4 N-乙酰葡萄糖胺(GlcNAc)。负责这种修饰的转移酶,CcGnt1(灰花纹鹅膏 GlcNAc 转移酶 1),在昆虫细胞中被鉴定和表达。体外实验证明了 CcGnt1 的活性。这种新型糖基转移酶属于糖基转移酶家族 8(GT8),预测为 II 型膜蛋白。CcGnt1 基因座的表达在子实体中上调,但通过 RNAi 下调表达会降低双分支 NLO 的水平;然而对子实体形成没有明显影响。

相似文献

3
Strand-Specific RNA-Seq Analyses of Fruiting Body Development in Coprinopsis cinerea.
PLoS One. 2015 Oct 28;10(10):e0141586. doi: 10.1371/journal.pone.0141586. eCollection 2015.
6
The Modes of Action of ChiIII, a Chitinase from Mushroom Coprinopsis cinerea, Shift with Changes in the Length of GlcNAc Oligomers.
J Agric Food Chem. 2016 Sep 21;64(37):6958-68. doi: 10.1021/acs.jafc.6b03086. Epub 2016 Sep 8.
10
Discovery and structural characterization of fucosylated oligomannosidic N-glycans in mushrooms.
J Biol Chem. 2011 Feb 25;286(8):5977-84. doi: 10.1074/jbc.M110.191304. Epub 2010 Dec 17.

引用本文的文献

1
Integrative glycomic analysis reveals the crucial role of protein glycosylation in fungal pathogenesis.
PLoS Pathog. 2025 Jul 7;21(7):e1013325. doi: 10.1371/journal.ppat.1013325. eCollection 2025 Jul.
2
Multi-omics insights into growth and fruiting body development in the entomopathogenic fungus .
IMA Fungus. 2025 May 7;16:e147558. doi: 10.3897/imafungus.16.147558. eCollection 2025.
3
Lessons on fruiting body morphogenesis from genomes and transcriptomes of .
Stud Mycol. 2023 Jul;104:1-85. doi: 10.3114/sim.2022.104.01. Epub 2023 Jan 31.
5
Glycomics, Glycoproteomics, and Glycogenomics: An Inter-Taxa Evolutionary Perspective.
Mol Cell Proteomics. 2021;20:100024. doi: 10.1074/mcp.R120.002263. Epub 2021 Jan 6.
6
N-glycomic Complexity in Anatomical Simplicity: as a Non-model Nematode?
Front Mol Biosci. 2019 Mar 12;6:9. doi: 10.3389/fmolb.2019.00009. eCollection 2019.
7
Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi.
Proc Natl Acad Sci U S A. 2019 Apr 9;116(15):7409-7418. doi: 10.1073/pnas.1817822116. Epub 2019 Mar 22.
8
A dual approach for improving homogeneity of a human-type N-glycan structure in Saccharomyces cerevisiae.
Glycoconj J. 2016 Apr;33(2):189-99. doi: 10.1007/s10719-016-9656-4. Epub 2016 Mar 16.
9
More Than Just Oligomannose: An N-glycomic Comparison of Penicillium Species.
Mol Cell Proteomics. 2016 Jan;15(1):73-92. doi: 10.1074/mcp.M115.055061. Epub 2015 Oct 29.
10
Evolutionary diversity of social amoebae N-glycomes may support interspecific autonomy.
Glycoconj J. 2015 Aug;32(6):345-59. doi: 10.1007/s10719-015-9592-8. Epub 2015 May 19.

本文引用的文献

1
Genomic and biochemical analysis of N glycosylation in the mushroom-forming basidiomycete Schizophyllum commune.
Appl Environ Microbiol. 2009 Jul;75(13):4648-52. doi: 10.1128/AEM.00352-09. Epub 2009 May 1.
3
Analysis of glycosylation site occupancy reveals a role for Ost3p and Ost6p in site-specific N-glycosylation efficiency.
Mol Cell Proteomics. 2009 Feb;8(2):357-64. doi: 10.1074/mcp.M800219-MCP200. Epub 2008 Oct 14.
4
The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics.
Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8. doi: 10.1093/nar/gkn663. Epub 2008 Oct 5.
5
Protein glycosylation pathways in filamentous fungi.
Glycobiology. 2008 Aug;18(8):626-37. doi: 10.1093/glycob/cwn044. Epub 2008 May 26.
7
Galactomannoproteins of Aspergillus fumigatus.
Eukaryot Cell. 2005 Jul;4(7):1308-16. doi: 10.1128/EC.4.7.1308-1316.2005.
8
Characterization of the LARGE family of putative glycosyltransferases associated with dystroglycanopathies.
Glycobiology. 2005 Oct;15(10):912-23. doi: 10.1093/glycob/cwi094. Epub 2005 Jun 15.
9
Mouse large can modify complex N- and mucin O-glycans on alpha-dystroglycan to induce laminin binding.
J Biol Chem. 2005 May 27;280(21):20851-9. doi: 10.1074/jbc.M500069200. Epub 2005 Mar 23.
10
Roles of N-linked glycans in the endoplasmic reticulum.
Annu Rev Biochem. 2004;73:1019-49. doi: 10.1146/annurev.biochem.73.011303.073752.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验