Neuroimagem Funcional, Departamento de Radiologia da Faculdade de Medicina do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil.
J Alzheimers Dis. 2010;19(4):1263-72. doi: 10.3233/JAD-2010-1322.
Here, we examine morphological changes in cortical thickness of patients with Alzheimer's disease (AD) using image analysis algorithms for brain structure segmentation and study automatic classification of AD patients using cortical and volumetric data. Cortical thickness of AD patients (n=14) was measured using MRI cortical surface-based analysis and compared with healthy subjects (n=20). Data was analyzed using an automated algorithm for tissue segmentation and classification. A Support Vector Machine (SVM) was applied over the volumetric measurements of subcortical and cortical structures to separate AD patients from controls. The group analysis showed cortical thickness reduction in the superior temporal lobe, parahippocampal gyrus, and enthorhinal cortex in both hemispheres. We also found cortical thinning in the isthmus of cingulate gyrus and middle temporal gyrus at the right hemisphere, as well as a reduction of the cortical mantle in areas previously shown to be associated with AD. We also confirmed that automatic classification algorithms (SVM) could be helpful to distinguish AD patients from healthy controls. Moreover, the same areas implicated in the pathogenesis of AD were the main parameters driving the classification algorithm. While the patient sample used in this study was relatively small, we expect that using a database of regional volumes derived from MRI scans of a large number of subjects will increase the SVM power of AD patient identification.
在这里,我们使用基于大脑结构分割的图像分析算法来检查阿尔茨海默病(AD)患者的皮质厚度的形态变化,并研究使用皮质和容积数据对 AD 患者进行自动分类。使用 MRI 皮质表面分析测量 AD 患者(n=14)的皮质厚度,并与健康受试者(n=20)进行比较。使用组织分割和分类的自动算法对数据进行分析。应用支持向量机(SVM)对皮质下和皮质结构的容积测量值进行分类,以将 AD 患者与对照组区分开来。组分析显示,双侧颞上回、海马旁回和内嗅皮质的皮质厚度减少。我们还发现右侧扣带回峡部和中颞叶的皮质变薄,以及先前与 AD 相关的皮质区域的皮质层减少。我们还证实,自动分类算法(SVM)可有助于区分 AD 患者和健康对照组。此外,AD 发病机制中涉及的相同区域是驱动分类算法的主要参数。虽然本研究中使用的患者样本相对较小,但我们预计使用大量受试者的 MRI 扫描得出的区域容积数据库将提高 SVM 识别 AD 患者的能力。