Suppr超能文献

基于选定质量轨迹的复杂 LC-MS 数据时间对齐算法。

Time alignment algorithms based on selected mass traces for complex LC-MS data.

机构信息

Analytical Biochemistry, Department of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.

出版信息

J Proteome Res. 2010 Mar 5;9(3):1483-95. doi: 10.1021/pr9010124.

Abstract

Time alignment of complex LC-MS data remains a challenge in proteomics and metabolomics studies. This work describes modifications of the Dynamic Time Warping (DTW) and the Parametric Time Warping (PTW) algorithms that improve the alignment quality for complex, highly variable LC-MS data sets. Regular DTW or PTW use one-dimensional profiles such as the Total Ion Chromatogram (TIC) or Base Peak Chromatogram (BPC) resulting in correct alignment if the signals have a relatively simple structure. However, when aligning the TICs of chromatograms from complex mixtures with large concentration variability such as serum or urine, both algorithms often lead to misalignment of peaks and thus incorrect comparisons in the subsequent statistical analysis. This is mainly due to the fact that compounds with different m/z values but similar retention times are not considered separately but confounded in the benefit function of the algorithms using only one-dimensional information. Thus, it is necessary to treat the information of different mass traces separately in the warping function to ensure that compounds having the same m/z value and retention time are aligned to each other. The Component Detection Algorithm (CODA) is widely used to calculate the quality of an LC-MS mass trace. By combining CODA with the warping algorithms of DTW or PTW (DTW-CODA or PTW-CODA), we include only high quality mass traces measured by CODA in the benefit function. Our results show that using several CODA selected high quality mass traces in DTW-CODA and PTW-CODA significantly improves the alignment quality of three different, highly complex LC-MS data sets. Moreover, DTW-CODA leads to better preservation of peak shape as compared to the original DTW-TIC algorithm, which often suffers from a substantial peak shape distortion. Our results show that combination of CODA selected mass traces with different time alignment algorithm is a general principle that provide accurate alignment for highly complex samples with large concentration variability.

摘要

时间对齐复杂的 LC-MS 数据仍然是蛋白质组学和代谢组学研究中的一个挑战。本工作描述了动态时间 warping(DTW)和参数时间 warping(PTW)算法的修改,这些修改提高了复杂、高度可变的 LC-MS 数据集的对齐质量。常规的 DTW 或 PTW 使用一维轮廓,如总离子色谱图(TIC)或基峰色谱图(BPC),如果信号具有相对简单的结构,则可以正确对齐。然而,当对齐具有大浓度变化的复杂混合物的 TIC 时,如血清或尿液,两种算法通常都会导致峰的错误对齐,从而导致随后的统计分析中出现不正确的比较。这主要是因为具有不同 m/z 值但保留时间相似的化合物没有分别考虑,而是在仅使用一维信息的算法的效益函数中混淆在一起。因此,在翘曲函数中需要分别处理不同质量轨迹的信息,以确保具有相同 m/z 值和保留时间的化合物彼此对齐。组分检测算法(CODA)广泛用于计算 LC-MS 质量轨迹的质量。通过将 CODA 与 DTW 或 PTW 的翘曲算法(DTW-CODA 或 PTW-CODA)结合使用,我们将仅在效益函数中包含由 CODA 测量的高质量质量轨迹。我们的结果表明,在 DTW-CODA 和 PTW-CODA 中使用几个 CODA 选择的高质量质量轨迹显著提高了三个不同的、高度复杂的 LC-MS 数据集的对齐质量。此外,与原始的 DTW-TIC 算法相比,DTW-CODA 导致更好的峰形保留,原始 DTW-TIC 算法通常会遭受大量的峰形变形。我们的结果表明,将 CODA 选择的质量轨迹与不同的时间对齐算法相结合是一个通用原则,可为具有大浓度变化的高度复杂样品提供准确的对齐。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验