Suppr超能文献

可变间隔启动子样元件在细菌 RNA 聚合酶全酶早期延伸中的利用。

Utilization of variably spaced promoter-like elements by the bacterial RNA polymerase holoenzyme during early elongation.

机构信息

Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA.

出版信息

Mol Microbiol. 2010 Feb;75(3):607-22. doi: 10.1111/j.1365-2958.2009.07021.x. Epub 2010 Jan 12.

Abstract

The bacterial RNA polymeras holoenzyme consists of a catalytic core enzyme in complex with a sigma factor that is required for promoter-specific transcription initiation. During initiation, members of the sigma(70) family of sigma factors contact two conserved promoter elements, the -10 and -35 elements, which are separated by approximately 17 base pairs (bp). sigma(70) family members contain four flexibly linked domains. Two of these domains, sigma(2) and sigma(4), contain determinants for interactions with the promoter -10 and -35 elements respectively. sigma(2) and sigma(4) also contain core-binding determinants. When bound to core the inter-domain distance between sigma(2) and sigma(4) matches the distance between promoter elements separated by approximately 17 bp. Prior work indicates that during early elongation the nascent RNA-assisted displacement of sigma(4) from core can enable the holoenzyme to adopt a configuration in which sigma(2) and sigma(4) are bound to 'promoter-like' DNA elements separated by a single base pair. Here we demonstrate that holoenzyme can also adopt configurations in which sigma(2) and sigma(4) are bound to 'promoter-like' DNA elements separated by 0, 2 or 3 bp. Thus, our findings suggest that displacement of sigma(4) from core enables the RNA polymerase holoenzyme to adopt a broad range of 'elongation-specific' configurations.

摘要

细菌 RNA 聚合酶全酶由与启动子特异性转录起始所需的 sigma 因子复合的催化核心酶组成。在起始过程中,sigma(70)家族的 sigma 因子与两个保守的启动子元件结合,即-10 和-35 元件,它们之间的距离约为 17 个碱基对(bp)。sigma(70)家族成员包含四个灵活连接的结构域。这两个结构域,sigma(2)和 sigma(4),分别包含与启动子-10 和-35 元件相互作用的决定因素。sigma(2)和 sigma(4)也包含核心结合决定因素。当与核心结合时,sigma(2)和 sigma(4)之间的结构域间距离与大约 17 bp 隔开的启动子元件之间的距离相匹配。先前的工作表明,在早期延伸过程中,新生 RNA 辅助的 sigma(4)从核心的置换可以使全酶采用一种构象,其中 sigma(2)和 sigma(4)结合到单个碱基对隔开的“启动子样”DNA 元件上。在这里,我们证明全酶也可以采用 sigma(2)和 sigma(4)结合到“启动子样”DNA 元件之间相隔 0、2 或 3 bp 的构象。因此,我们的发现表明 sigma(4)从核心的置换使 RNA 聚合酶全酶能够采用广泛的“延伸特异性”构象。

相似文献

1
Utilization of variably spaced promoter-like elements by the bacterial RNA polymerase holoenzyme during early elongation.
Mol Microbiol. 2010 Feb;75(3):607-22. doi: 10.1111/j.1365-2958.2009.07021.x. Epub 2010 Jan 12.
5
The interaction between sigma70 and the beta-flap of Escherichia coli RNA polymerase inhibits extension of nascent RNA during early elongation.
Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4488-93. doi: 10.1073/pnas.0409850102. Epub 2005 Mar 10.
6
Regulatory sequences in sigma 54 localise near the start of DNA melting.
J Mol Biol. 2001 Mar 2;306(4):681-701. doi: 10.1006/jmbi.2000.4393.
8
Region I modifies DNA-binding domain conformation of sigma 54 within the holoenzyme.
J Mol Biol. 1999 Jan 15;285(2):507-14. doi: 10.1006/jmbi.1998.2328.
9
Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex.
Science. 2002 May 17;296(5571):1285-90. doi: 10.1126/science.1069595.

引用本文的文献

1
In transcription antitermination by Qλ, NusA induces refolding of Qλ to form a nozzle that extends the RNA polymerase RNA-exit channel.
Proc Natl Acad Sci U S A. 2022 Aug 16;119(33):e2205278119. doi: 10.1073/pnas.2205278119. Epub 2022 Aug 11.
2
Possible roles of σ-dependent RNA polymerase pausing in transcription regulation.
RNA Biol. 2017 Dec 2;14(12):1678-1682. doi: 10.1080/15476286.2017.1356568. Epub 2017 Sep 13.
3
σ38-dependent promoter-proximal pausing by bacterial RNA polymerase.
Nucleic Acids Res. 2017 Apr 7;45(6):3006-3016. doi: 10.1093/nar/gkw1213.
4
Structure of the DNA-binding and RNA-polymerase-binding region of transcription antitermination factor λQ.
Structure. 2014 Mar 4;22(3):488-95. doi: 10.1016/j.str.2013.12.010. Epub 2014 Jan 16.
5
Structural transitions in the transcription elongation complexes of bacterial RNA polymerase during σ-dependent pausing.
Nucleic Acids Res. 2012 Apr;40(7):3078-91. doi: 10.1093/nar/gkr1158. Epub 2011 Dec 2.
7
The core-independent promoter-specific interaction of primary sigma factor.
Nucleic Acids Res. 2011 Feb;39(3):913-25. doi: 10.1093/nar/gkq911. Epub 2010 Oct 8.

本文引用的文献

1
The bacteriophage lambda Q antiterminator protein contacts the beta-flap domain of RNA polymerase.
Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15305-10. doi: 10.1073/pnas.0805757105. Epub 2008 Oct 1.
2
Structural basis for transcription elongation by bacterial RNA polymerase.
Nature. 2007 Jul 12;448(7150):157-62. doi: 10.1038/nature05932. Epub 2007 Jun 20.
6
Sigma and RNA polymerase: an on-again, off-again relationship?
Mol Cell. 2005 Nov 11;20(3):335-45. doi: 10.1016/j.molcel.2005.10.015.
9
The interaction between sigma70 and the beta-flap of Escherichia coli RNA polymerase inhibits extension of nascent RNA during early elongation.
Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4488-93. doi: 10.1073/pnas.0409850102. Epub 2005 Mar 10.
10
A regulator that inhibits transcription by targeting an intersubunit interaction of the RNA polymerase holoenzyme.
Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4554-9. doi: 10.1073/pnas.0400923101. Epub 2004 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验