Department of Life Sciences, Division of Cell and Molecular Biology, Centre for Molecular Microbiology and Infection, Flowers Building, Exhibition Road, Imperial College London, London SW7 2AZ, UK.
J Mol Biol. 2010 Mar 12;396(5):1260-70. doi: 10.1016/j.jmb.2010.01.012. Epub 2010 Jan 11.
Clostridium difficile is a nosocomial bacterial pathogen causing antibiotic-associated diarrhea and fatal pseudomembranous colitis. Key virulence factors are toxin A and toxin B (TcdB), two highly related toxins that are members of the large clostridial toxin family. These large multifunctional proteins disrupt cell function using a glucosyltransferase domain that is translocated into the cytosol after vesicular internalization of intact holotoxin. Although substantial information about the biochemical mechanisms of intoxication exists, research has been hampered by limited structural information, particularly of intact holotoxin. Here, we used small-angle X-ray scattering (SAXS) methods to obtain an ab initio low-resolution structure of native TcdB, which demonstrated that this molecule is monomeric in solution and possesses a highly asymmetric shape with a maximum dimension of approximately 275 A. Combining this SAXS information with crystallographic or modeled structures of individual functional domains of TcdB reveals for the first time that the three-dimensional structure of TcdB is organized into four distinct structural domains. Structures of the N-terminal glucosyltransferase, the cysteine protease, and the C-terminal repeat region can be aligned within three domains of the SAXS envelope. A fourth domain, predicted to be involved in the translocation of the glucosyltransferase, appears as a large solvent-exposed protrusion. Knowledge of the shapes and relative orientations of toxin domains provides new insight into defining functional domain boundaries and provides a framework for understanding how potential intra-domain interactions enable conformational changes to propagate between domains to facilitate intoxication processes.
艰难梭菌是一种医院获得性细菌病原体,可引起抗生素相关性腹泻和致命的伪膜性结肠炎。关键的毒力因子是毒素 A 和毒素 B(TcdB),这两种高度相关的毒素是大型梭状芽孢杆菌毒素家族的成员。这些大型多功能蛋白通过葡糖基转移酶结构域破坏细胞功能,该结构域在完整全毒素的囊泡内化后被转运到细胞质中。尽管关于中毒的生化机制已经有了大量的信息,但由于结构信息有限,特别是关于完整全毒素的结构信息有限,研究受到了阻碍。在这里,我们使用小角度 X 射线散射(SAXS)方法获得了天然 TcdB 的从头低分辨率结构,该结构表明该分子在溶液中是单体,并且具有高度不对称的形状,最大尺寸约为 275 A。将这种 SAXS 信息与 TcdB 的单个功能结构域的晶体学或建模结构相结合,首次揭示了 TcdB 的三维结构是由四个不同的结构域组成的。N 端葡糖基转移酶、半胱氨酸蛋白酶和 C 端重复区的结构可以在 SAXS 包络的三个结构域内对齐。第四个结构域,预测与葡糖基转移酶的易位有关,表现为一个大的溶剂暴露的突出物。毒素结构域的形状和相对取向的知识为定义功能结构域边界提供了新的见解,并为理解潜在的域内相互作用如何使构象变化在结构域之间传播提供了框架,以促进中毒过程。