Department of Neuroscience, Nanostructured Interfaces and Surfaces Centre of Excellence, Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, 10125 Torino, Italy.
J Neurosci. 2010 Jan 13;30(2):491-504. doi: 10.1523/JNEUROSCI.4961-09.2010.
We studied wild-type (WT) and Cav1.3(-/-) mouse chromaffin cells (MCCs) with the aim to determine the isoform of L-type Ca(2+) channel (LTCC) and BK channels that underlie the pacemaker current controlling spontaneous firing. Most WT-MCCs (80%) were spontaneously active (1.5 Hz) and highly sensitive to nifedipine and BayK-8644 (1,4-dihydro-2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-3-pyridinecarboxylic acid, methyl ester). Nifedipine blocked the firing, whereas BayK-8644 increased threefold the firing rate. The two dihydropyridines and the BK channel blocker paxilline altered the shape of action potentials (APs), suggesting close coupling of LTCCs to BK channels. WT-MCCs expressed equal fractions of functionally active Cav1.2 and Cav1.3 channels. Cav1.3 channel deficiency decreased the number of normally firing MCCs (30%; 2.0 Hz), suggesting a critical role of these channels on firing, which derived from their slow inactivation rate, sizeable activation at subthreshold potentials, and close coupling to fast inactivating BK channels as determined by using EGTA and BAPTA Ca(2+) buffering. By means of the action potential clamp, in TTX-treated WT-MCCs, we found that the interpulse pacemaker current was always net inward and dominated by LTCCs. Fast inactivating and non-inactivating BK currents sustained mainly the afterhyperpolarization of the short APs (2-3 ms) and only partially the pacemaker current during the long interspike (300-500 ms). Deletion of Cav1.3 channels reduced drastically the inward Ca(2+) current and the corresponding Ca(2+)-activated BK current during spikes. Our data highlight the role of Cav1.3, and to a minor degree of Cav1.2, as subthreshold pacemaker channels in MCCs and open new interesting features about their role in the control of firing and catecholamine secretion at rest and during sustained stimulations matching acute stress.
我们研究了野生型 (WT) 和 Cav1.3(-/-) 小鼠嗜铬细胞 (MCC),旨在确定控制自发性放电的起搏电流所依赖的 L 型钙通道 (LTCC) 和 BK 通道的同工型。大多数 WT-MCC(80%)自发性活跃(1.5 Hz),对硝苯地平(1,4-二氢-2,6-二甲基-5-硝基-4-[2-(三氟甲基)苯基]-3-吡啶羧酸甲酯)和 BayK-8644(1,4-二氢-2,6-二甲基-5-硝基-4-[2-(三氟甲基)苯基]-3-吡啶羧酸甲酯)高度敏感。硝苯地平阻断放电,而 BayK-8644 将放电率提高三倍。两种二氢吡啶类药物和 BK 通道阻断剂 paxilline 改变动作电位 (AP) 的形状,表明 LTCC 与 BK 通道紧密耦联。WT-MCC 表达功能上活跃的 Cav1.2 和 Cav1.3 通道相等的分数。Cav1.3 通道缺失减少了正常放电的 MCC 数量(30%;2.0 Hz),表明这些通道对放电具有关键作用,这源自它们的缓慢失活率、亚阈值电位下的可观激活以及与快速失活的 BK 通道的紧密耦联,如通过使用 EGTA 和 BAPTA Ca(2+)缓冲确定的。通过动作电位钳位,在 TTX 处理的 WT-MCC 中,我们发现脉冲间起搏电流始终为内向,并由 LTCC 主导。快速失活和非失活的 BK 电流主要维持短 AP(2-3 ms)的超极化,仅部分维持长间隔(300-500 ms)期间的起搏电流。Cav1.3 通道缺失大大减少了尖峰期间的内向 Ca(2+)电流和相应的 Ca(2+)激活的 BK 电流。我们的数据强调了 Cav1.3(以及 Cav1.2 的较小程度)作为 MCC 亚阈值起搏通道的作用,并为其在控制休息和持续刺激期间的放电和儿茶酚胺分泌方面的作用开辟了新的有趣特征,这些刺激与急性应激相匹配。