Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
J Neurosci. 2010 Aug 11;30(32):10624-38. doi: 10.1523/JNEUROSCI.0402-10.2010.
Fragile X syndrome (FXS) is an inherited neurologic disease caused by loss of fragile X mental retardation protein (FMRP), which is hypothesized to mediate negative regulation of mRNA translation at synapses. A prominent feature of FXS animal models is exaggerated signaling through group 1 metabotropic glutamate receptors (gp1 mGluRs), and therapeutic strategies to treat FXS are targeted mainly at gp1 mGluRs. Recent studies, however, indicate that a variety of receptor-mediated signal transduction pathways are dysregulated in FXS, suggesting that FMRP acts on a common downstream signaling molecule. Here, we show that deficiency of FMRP results in excess activity of phosphoinositide 3-kinase (PI3K), a downstream signaling molecule of many cell surface receptors. In Fmr1 knock-out neurons, excess synaptic PI3K activity can be reduced by perturbation of gp1 mGluR-mediated signaling. Remarkably, increased PI3K activity was also observed in FMRP-deficient non-neuronal cells in the absence of gp1 mGluRs. Here, we show that FMRP regulates the synthesis and synaptic localization of p110beta, the catalytic subunit of PI3K. In wild type, gp1 mGluR activation induces p110beta translation, p110beta protein expression, and PI3K activity. In contrast, both p110beta protein synthesis and PI3K activity are elevated and insensitive to gp1 mGluR stimulation in Fmr1 knock-out. This suggests that dysregulated PI3K signaling may underlie the synaptic impairments in FXS. In support of this hypothesis, we show that PI3K antagonists rescue three FXS-associated phenotypes: dysregulated synaptic protein synthesis, excess AMPA receptor internalization, and increased spine density. Targeting excessive PI3K activity might thus be a potent therapeutic strategy for FXS.
脆性 X 综合征(FXS)是一种遗传性神经疾病,由脆性 X 智力低下蛋白(FMRP)缺失引起,该蛋白被假设介导突触中 mRNA 翻译的负调控。FXS 动物模型的一个突出特征是通过 1 型代谢型谷氨酸受体(gp1 mGluRs)过度信号传递,治疗 FXS 的策略主要针对 gp1 mGluRs。然而,最近的研究表明,FXS 中多种受体介导的信号转导途径失调,表明 FMRP 作用于共同的下游信号分子。在这里,我们表明 FMRP 缺乏导致磷酸肌醇 3-激酶(PI3K)过度活跃,PI3K 是许多细胞表面受体的下游信号分子。在 Fmr1 敲除神经元中,通过干扰 gp1 mGluR 介导的信号传递,可以减少过度的突触 PI3K 活性。值得注意的是,在没有 gp1 mGluRs 的情况下,在缺乏 FMRP 的非神经元细胞中也观察到增加的 PI3K 活性。在这里,我们表明 FMRP 调节 PI3K 的催化亚基 p110beta 的合成和突触定位。在野生型中,gp1 mGluR 激活诱导 p110beta 翻译、p110beta 蛋白表达和 PI3K 活性。相比之下,在 Fmr1 敲除中,p110beta 蛋白合成和 PI3K 活性均升高且对 gp1 mGluR 刺激不敏感。这表明失调的 PI3K 信号可能是 FXS 中突触损伤的基础。支持这一假说,我们表明 PI3K 拮抗剂挽救了三个 FXS 相关表型:突触蛋白合成失调、AMPA 受体内化增加和棘密度增加。因此,靶向过度的 PI3K 活性可能是 FXS 的一种有效治疗策略。