Suppr超能文献

微生物烃类合成的方法:大肠杆菌中脂肪酸的过量生产及催化转化为烷烃。

A process for microbial hydrocarbon synthesis: Overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes.

机构信息

Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison Wisconsin, USA.

出版信息

Biotechnol Bioeng. 2010 Jun 1;106(2):193-202. doi: 10.1002/bit.22660.

Abstract

The development of renewable alternatives to diesel and jet fuels is highly desirable for the heavy transportation sector, and would offer benefits over the production and use of short-chain alcohols for personal transportation. Here, we report the development of a metabolically engineered strain of Escherichia coli that overproduces medium-chain length fatty acids via three basic modifications: elimination of beta-oxidation, overexpression of the four subunits of acetyl-CoA carboxylase, and expression of a plant acyl-acyl carrier protein (ACP) thioesterase from Umbellularia californica (BTE). The expression level of BTE was optimized by comparing fatty acid production from strains harboring BTE on plasmids with four different copy numbers. Expression of BTE from low copy number plasmids resulted in the highest fatty acid production. Up to a seven-fold increase in total fatty acid production was observed in engineered strains over a negative control strain (lacking beta-oxidation), with a composition dominated by C(12) and C(14) saturated and unsaturated fatty acids. Next, a strategy for producing undecane via a combination of biotechnology and heterogeneous catalysis is demonstrated. Fatty acids were extracted from a culture of an overproducing strain into an alkane phase and fed to a Pd/C plug flow reactor, where the extracted fatty acids were decarboxylated into saturated alkanes. The result is an enriched alkane stream that can be recycled for continuous extractions. Complete conversion of C(12) fatty acids extracted from culture to alkanes has been demonstrated yielding a concentration of 0.44 g L(-1) (culture volume) undecane.

摘要

可再生柴油和喷气燃料替代品的开发对于重型运输行业来说是非常理想的,并且与个人运输用短链醇的生产和使用相比具有优势。在这里,我们报告了大肠杆菌代谢工程菌株的开发,该菌株通过三种基本修饰来过度产生中链长度脂肪酸:消除β-氧化、过表达乙酰辅酶 A 羧化酶的四个亚基以及表达来自加利福尼亚杨梅的植物酰基辅酶 A 酰基载体蛋白 (ACP) 硫酯酶 (BTE)。通过比较在具有四个不同拷贝数的质粒上携带 BTE 的菌株的脂肪酸产量,优化了 BTE 的表达水平。低拷贝数质粒上 BTE 的表达导致脂肪酸产量最高。与缺乏β-氧化的阴性对照菌株相比,工程菌株中的总脂肪酸产量增加了七倍,其组成主要由 C(12)和 C(14)饱和和不饱和脂肪酸组成。接下来,展示了通过生物技术和多相催化相结合生产十一烷的策略。脂肪酸从过度产生的菌株的培养物中提取到烷烃相中,并进料到 Pd/C 推流式反应器中,在该反应器中,提取的脂肪酸脱羧生成饱和烷烃。结果是得到了一种富含烷烃的流股,可以进行连续提取。从培养物中提取的 C(12)脂肪酸的完全转化为烷烃已得到证明,得到 0.44 g L(-1)(培养物体积)十一烷的浓度。

相似文献

2
Microbial production of short-chain alkanes.
Nature. 2013 Oct 24;502(7472):571-4. doi: 10.1038/nature12536. Epub 2013 Sep 29.
3
Improving the tolerance of Escherichia coli to medium-chain fatty acid production.
Metab Eng. 2014 Sep;25:1-7. doi: 10.1016/j.ymben.2014.06.003. Epub 2014 Jun 13.
5
Heterologous biosynthesis and manipulation of alkanes in Escherichia coli.
Metab Eng. 2016 Nov;38:19-28. doi: 10.1016/j.ymben.2016.06.002. Epub 2016 Jun 4.
6
Biosynthesis of medium chain length alkanes for bio-aviation fuel by metabolic engineered Escherichia coli.
Bioresour Technol. 2017 Sep;239:542-545. doi: 10.1016/j.biortech.2017.05.101. Epub 2017 May 18.
8
An integrated computational and experimental study for overproducing fatty acids in Escherichia coli.
Metab Eng. 2012 Nov;14(6):687-704. doi: 10.1016/j.ymben.2012.08.008. Epub 2012 Oct 2.
9
Production of medium chain length fatty alcohols from glucose in Escherichia coli.
Metab Eng. 2013 Nov;20:177-86. doi: 10.1016/j.ymben.2013.10.006. Epub 2013 Oct 17.
10
Synthesis of medium chain length fatty acid ethyl esters in engineered Escherichia coli using endogenously produced medium chain fatty acids.
Enzyme Microb Technol. 2013 Jul 10;53(2):128-33. doi: 10.1016/j.enzmictec.2013.03.012. Epub 2013 Mar 31.

引用本文的文献

1
In silico identification of gene targets to enhance C12 fatty acid production in Escherichia coli.
Appl Microbiol Biotechnol. 2025 May 8;109(1):116. doi: 10.1007/s00253-025-13501-6.
2
Uncovering the substrate of olefin synthase loading domains in cyanobacteria sp. strain PCC 7002.
RSC Chem Biol. 2025 Jan 14;6(2):307-316. doi: 10.1039/d4cb00234b. eCollection 2025 Feb 5.
3
Expanding the synthetic biology toolbox of Cupriavidus necator for establishing fatty acid production.
J Ind Microbiol Biotechnol. 2024 Jan 9;51. doi: 10.1093/jimb/kuae008.
5
Ketosynthase mutants enable short-chain fatty acid biosynthesis in E. coli.
Metab Eng. 2023 May;77:118-127. doi: 10.1016/j.ymben.2023.03.008. Epub 2023 Mar 22.
7
Utilizing Alcohol for Alkane Biosynthesis by Introducing a Fatty Alcohol Dehydrogenase.
Appl Environ Microbiol. 2022 Dec 13;88(23):e0126422. doi: 10.1128/aem.01264-22. Epub 2022 Nov 23.
8
Reconstruction and optimization of a - microbial consortium for mcl-PHA production from lignocellulosic biomass.
Front Bioeng Biotechnol. 2022 Oct 19;10:1023325. doi: 10.3389/fbioe.2022.1023325. eCollection 2022.
9
Ca:Mg ratio, medium-chain fatty acids, and the gut microbiome.
Clin Nutr. 2022 Nov;41(11):2490-2499. doi: 10.1016/j.clnu.2022.08.031. Epub 2022 Sep 12.
10
A dual cellular-heterogeneous catalyst strategy for the production of olefins from glucose.
Nat Chem. 2021 Dec;13(12):1178-1185. doi: 10.1038/s41557-021-00820-0. Epub 2021 Nov 22.

本文引用的文献

2
A review of the current state of biodiesel production using enzymatic transesterification.
Biotechnol Bioeng. 2009 Apr 1;102(5):1298-315. doi: 10.1002/bit.22256.
3
Transmembrane passage of hydrophobic compounds through a protein channel wall.
Nature. 2009 Mar 19;458(7236):367-70. doi: 10.1038/nature07678. Epub 2009 Feb 1.
4
Overproduction of free fatty acids in E. coli: implications for biodiesel production.
Metab Eng. 2008 Nov;10(6):333-9. doi: 10.1016/j.ymben.2008.08.006. Epub 2008 Sep 9.
5
E. coli genome manipulation by P1 transduction.
Curr Protoc Mol Biol. 2007 Jul;Chapter 1:1.17.1-1.17.8. doi: 10.1002/0471142727.mb0117s79.
6
Biodiesel production--current state of the art and challenges.
J Ind Microbiol Biotechnol. 2008 May;35(5):421. doi: 10.1007/s10295-008-0312-2. Epub 2008 Jan 18.
7
Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels.
Nature. 2008 Jan 3;451(7174):86-9. doi: 10.1038/nature06450.
9
In vivo functional analyses of the type II acyl carrier proteins of fatty acid biosynthesis.
J Biol Chem. 2007 Jul 13;282(28):20319-28. doi: 10.1074/jbc.M703789200. Epub 2007 May 23.
10
Cloning and functional expression of an acyl-ACP thioesterase FatB type from Diploknema (Madhuca) butyracea seeds in Escherichia coli.
Plant Physiol Biochem. 2006 Nov-Dec;44(11-12):645-55. doi: 10.1016/j.plaphy.2006.09.017. Epub 2006 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验