Suppr超能文献

黏脂素:细胞内的 TRPML1-3 通道。

Mucolipins: Intracellular TRPML1-3 channels.

机构信息

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

FEBS Lett. 2010 May 17;584(10):2013-21. doi: 10.1016/j.febslet.2009.12.056. Epub 2010 Jan 13.

Abstract

The mucolipin family of Transient Receptor Potential (TRPML) proteins is predicted to encode ion channels expressed in intracellular endosomes and lysosomes. Loss-of-function mutations of human TRPML1 cause type IV mucolipidosis (ML4), a childhood neurodegenerative disease. Meanwhile, gain-of-function mutations in the mouse TRPML3 result in the varitint-waddler (Va) phenotype with hearing and pigmentation defects. The broad spectrum phenotypes of ML4 and Va appear to result from certain aspects of endosomal/lysosomal dysfunction. Lysosomes, traditionally believed to be the terminal "recycling center" for biological "garbage", are now known to play indispensable roles in intracellular signal transduction and membrane trafficking. Studies employing animal models and cell lines in which TRPML genes have been genetically disrupted or depleted have uncovered roles of TRPMLs in multiple cellular functions including membrane trafficking, signal transduction, and organellar ion homeostasis. Physiological assays of mammalian cell lines in which TRPMLs are heterologously overexpressed have revealed the channel properties of TRPMLs in mediating cation (Ca(2+)/Fe(2+)) efflux from endosomes and lysosomes in response to unidentified cellular cues. This review aims to summarize these recent advances in the TRPML field and to correlate the channel properties of endolysosomal TRPMLs with their biological functions. We will also discuss the potential cellular mechanisms by which TRPML deficiency leads to neurodegeneration.

摘要

黏脂素家族的瞬时受体电位 (TRPML) 蛋白被预测编码在内质网和溶酶体的细胞内内涵体中表达的离子通道。人类 TRPML1 的功能丧失突变导致 IV 型黏脂贮积症 (ML4),这是一种儿童神经退行性疾病。与此同时,小鼠 TRPML3 的功能获得性突变导致出现具有听力和色素缺陷的 varitint-waddler (Va) 表型。ML4 和 Va 的广泛表型似乎是由于内涵体/溶酶体功能障碍的某些方面引起的。溶酶体,传统上被认为是生物“垃圾”的最终“回收中心”,现在已知在细胞内信号转导和膜运输中发挥不可或缺的作用。使用 TRPML 基因已被遗传破坏或耗尽的动物模型和细胞系进行的研究揭示了 TRPML 在多种细胞功能中的作用,包括膜运输、信号转导和细胞器离子稳态。对异源过表达 TRPML 的哺乳动物细胞系进行的生理测定揭示了 TRPML 通道在响应未识别的细胞信号时介导阳离子(Ca(2+)/Fe(2+))从内涵体和溶酶体流出的特性。本综述旨在总结 TRPML 领域的这些最新进展,并将内体溶酶体 TRPML 的通道特性与其生物学功能联系起来。我们还将讨论 TRPML 缺乏导致神经退行性变的潜在细胞机制。

相似文献

1
Mucolipins: Intracellular TRPML1-3 channels.黏脂素:细胞内的 TRPML1-3 通道。
FEBS Lett. 2010 May 17;584(10):2013-21. doi: 10.1016/j.febslet.2009.12.056. Epub 2010 Jan 13.
6
TRPML Cation Channels in Inflammation and Immunity.瞬时受体电位 M 型阳离子通道在炎症和免疫中的作用。
Front Immunol. 2020 Feb 28;11:225. doi: 10.3389/fimmu.2020.00225. eCollection 2020.
7
Mucolipidosis type IV and the mucolipins.黏脂贮积症Ⅳ型和黏脂素。
Biochem Soc Trans. 2010 Dec;38(6):1432-5. doi: 10.1042/BST0381432.
9
TRPMLs: in sickness and in health.三磷酸肌醇受体黏附分子(TRPMLs):关乎疾病与健康。
Am J Physiol Renal Physiol. 2009 Jun;296(6):F1245-54. doi: 10.1152/ajprenal.90522.2008. Epub 2009 Jan 21.

引用本文的文献

3
Lysosomal ion channels and pain.溶酶体离子通道与疼痛。
Pain Rep. 2025 Jun 5;10(4):e1282. doi: 10.1097/PR9.0000000000001282. eCollection 2025 Aug.
7
Autophagy-lysosome pathway in insulin & glucagon homeostasis.胰岛素与胰高血糖素稳态中的自噬-溶酶体途径
Front Endocrinol (Lausanne). 2025 Feb 10;16:1541794. doi: 10.3389/fendo.2025.1541794. eCollection 2025.

本文引用的文献

1
TRP channels of intracellular membranes.细胞内膜的 TRP 通道。
J Neurochem. 2010 Apr;113(2):313-28. doi: 10.1111/j.1471-4159.2010.06626.x. Epub 2010 Jan 28.
6
Rab GTPases as coordinators of vesicle traffic.作为囊泡运输协调因子的Rab小GTP酶
Nat Rev Mol Cell Biol. 2009 Aug;10(8):513-25. doi: 10.1038/nrm2728. Epub 2009 Jul 15.
8
A gene network regulating lysosomal biogenesis and function.一个调节溶酶体生物发生和功能的基因网络。
Science. 2009 Jul 24;325(5939):473-7. doi: 10.1126/science.1174447. Epub 2009 Jun 25.
9
The Ca(2+) channel TRPML3 regulates membrane trafficking and autophagy.钙离子通道TRPML3调节膜转运和自噬。
Traffic. 2009 Aug;10(8):1157-67. doi: 10.1111/j.1600-0854.2009.00924.x. Epub 2009 May 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验