Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
Neuroscience. 2010 Mar 17;166(2):397-407. doi: 10.1016/j.neuroscience.2010.01.005. Epub 2010 Jan 14.
Satellite glial cells (SGCs) surround primary afferent neurons in sensory ganglia, and increasing evidence has implicated the K(+) channels of SGCs in affecting or regulating sensory ganglion excitability. The inwardly rectifying K(+) (Kir) channel Kir4.1 is highly expressed in several types of glial cells in the central nervous system (CNS) where it has been implicated in extracellular K(+) concentration buffering. Upon neuronal activity, the extracellular K(+) concentration increases, and if not corrected, causes neuronal depolarization and uncontrolled changes in neuronal excitability. Recently, it has been demonstrated that knockdown of Kir4.1 expression in trigeminal ganglia leads to neuronal hyperexcitability in this ganglia and heightened nociception. Thus, we investigated the contribution of Kir4.1 to the membrane K(+) conductance of SGCs in neonatal and adult mouse trigeminal and dorsal root ganglia. Whole cell patch clamp recordings were performed in conjunction with immunocytochemistry and quantitative transcript analysis in various mouse lines. We found that in wild-type mice, the inward K(+) conductance of SGCs is blocked almost completely with extracellular barium, cesium and desipramine, consistent with a conductance mediated by Kir channels. We then utilized mouse lines in which genetic ablation led to partial or complete loss of Kir4.1 expression to assess the role of this channel subunit in SGCs. The inward K(+) currents of SGCs in Kir4.1+/- mice were decreased by about half while these currents were almost completely absent in Kir4.1-/- mice. These findings in combination with previous reports support the notion that Kir4.1 is the principal Kir channel type in SGCs. Therefore Kir4.1 emerges as a key regulator of SGC function and possibly neuronal excitability in sensory ganglia.
卫星胶质细胞(SGCs)围绕感觉神经节中的初级传入神经元,越来越多的证据表明 SGCs 的 K(+)通道影响或调节感觉神经节兴奋性。内向整流钾 (Kir) 通道 Kir4.1 在中枢神经系统 (CNS) 中的几种类型的胶质细胞中高度表达,它与细胞外 K(+)浓度缓冲有关。在神经元活动时,细胞外 K(+)浓度增加,如果不进行校正,会导致神经元去极化和神经元兴奋性的失控变化。最近,研究表明,三叉神经节中 Kir4.1 表达的敲低会导致该神经节中的神经元过度兴奋和痛觉过敏增加。因此,我们研究了 Kir4.1 对新生和成年小鼠三叉神经和背根神经节 SGC 膜钾电导的贡献。在各种小鼠品系中,我们通过全细胞膜片钳记录结合免疫细胞化学和定量转录分析来进行研究。我们发现,在野生型小鼠中,SGC 的内向 K(+)电导几乎可以被细胞外钡、铯和去甲丙咪嗪完全阻断,这与 Kir 通道介导的电导一致。然后,我们利用基因敲除导致 Kir4.1 表达部分或完全缺失的小鼠品系来评估该通道亚基在 SGCs 中的作用。Kir4.1+/- 小鼠的 SGC 内向 K(+)电流减少了约一半,而 Kir4.1-/- 小鼠的这些电流几乎完全消失。这些发现与之前的报告一起支持了 Kir4.1 是 SGCs 中主要 Kir 通道类型的观点。因此,Kir4.1 成为 SGC 功能和感觉神经节中神经元兴奋性的关键调节剂。