Suppr超能文献

基于挥发性指纹图谱的多元分析识别啤酒品牌

Recognition of beer brand based on multivariate analysis of volatile fingerprint.

机构信息

Institute of Chemical Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Chemistry and Analysis, Technicka 3, 16628 Prague 6, Czech Republic.

出版信息

J Chromatogr A. 2010 Jun 18;1217(25):4195-203. doi: 10.1016/j.chroma.2009.12.049. Epub 2010 Jan 4.

Abstract

Automated head-space solid-phase microextraction (HS-SPME)-based sampling procedure, coupled to gas chromatography-time-of-flight mass spectrometry (GC-TOFMS), was developed and employed for obtaining of fingerprints (GC profiles) of beer volatiles. In total, 265 speciality beer samples were collected over a 1-year period with the aim to distinguish, based on analytical (profiling) data, (i) the beers labelled as Rochefort 8; (ii) a group consisting of Rochefort 6, 8, 10 beers; and (iii) Trappist beers. For the chemometric evaluation of the data, partial least squares discriminant analysis (PLS-DA), linear discriminant analysis (LDA), and artificial neural networks with multilayer perceptrons (ANN-MLP) were tested. The best prediction ability was obtained for the model that distinguished a group of Rochefort 6, 8, 10 beers from the rest of beers. In this case, all chemometric tools employed provided 100% correct classification. Slightly worse prediction abilities were achieved for the models "Trappist vs. non-Trappist beers" with the values of 93.9% (PLS-DA), 91.9% (LDA) and 97.0% (ANN-MLP) and "Rochefort 8 vs. the rest" with the values of 87.9% (PLS-DA) and 84.8% (LDA) and 93.9% (ANN-MLP). In addition to chromatographic profiling, also the potential of direct coupling of SPME (extraction/pre-concentration device) with high-resolution TOFMS employing a direct analysis in real time (DART) ion source has been demonstrated as a challenging profiling approach.

摘要

建立了基于自动顶空固相微萃取(HS-SPME)的采样程序,并将其与气相色谱-飞行时间质谱(GC-TOFMS)联用,用于获得啤酒挥发性成分的指纹图谱(GC 图谱)。在一年的时间里,共采集了 265 种特种啤酒样品,目的是根据分析(剖析)数据区分:(i)标称为 Rochefort 8 的啤酒;(ii)由 Rochefort 6、8、10 种啤酒组成的一组;以及(iii)特拉普派啤酒。为了对数据进行化学计量评估,测试了偏最小二乘判别分析(PLS-DA)、线性判别分析(LDA)和具有多层感知器(ANN-MLP)的人工神经网络。用于区分 Rochefort 6、8、10 种啤酒与其他啤酒的模型获得了最佳预测能力。在这种情况下,所有使用的化学计量工具都提供了 100%的正确分类。对于“特拉普派啤酒与非特拉普派啤酒”模型,预测能力稍差,准确率分别为 93.9%(PLS-DA)、91.9%(LDA)和 97.0%(ANN-MLP),以及“Rochefort 8 与其他啤酒”模型,准确率分别为 87.9%(PLS-DA)和 84.8%(LDA)和 93.9%(ANN-MLP)。除了色谱分析外,还展示了将 SPME(萃取/预浓缩装置)与采用实时直接分析(DART)离子源的高分辨率 TOFMS 直接耦合作为一种具有挑战性的分析方法的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验