Institute of Chemical Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Chemistry and Analysis, Technicka 3, 16628 Prague 6, Czech Republic.
J Chromatogr A. 2010 Jun 18;1217(25):4195-203. doi: 10.1016/j.chroma.2009.12.049. Epub 2010 Jan 4.
Automated head-space solid-phase microextraction (HS-SPME)-based sampling procedure, coupled to gas chromatography-time-of-flight mass spectrometry (GC-TOFMS), was developed and employed for obtaining of fingerprints (GC profiles) of beer volatiles. In total, 265 speciality beer samples were collected over a 1-year period with the aim to distinguish, based on analytical (profiling) data, (i) the beers labelled as Rochefort 8; (ii) a group consisting of Rochefort 6, 8, 10 beers; and (iii) Trappist beers. For the chemometric evaluation of the data, partial least squares discriminant analysis (PLS-DA), linear discriminant analysis (LDA), and artificial neural networks with multilayer perceptrons (ANN-MLP) were tested. The best prediction ability was obtained for the model that distinguished a group of Rochefort 6, 8, 10 beers from the rest of beers. In this case, all chemometric tools employed provided 100% correct classification. Slightly worse prediction abilities were achieved for the models "Trappist vs. non-Trappist beers" with the values of 93.9% (PLS-DA), 91.9% (LDA) and 97.0% (ANN-MLP) and "Rochefort 8 vs. the rest" with the values of 87.9% (PLS-DA) and 84.8% (LDA) and 93.9% (ANN-MLP). In addition to chromatographic profiling, also the potential of direct coupling of SPME (extraction/pre-concentration device) with high-resolution TOFMS employing a direct analysis in real time (DART) ion source has been demonstrated as a challenging profiling approach.
建立了基于自动顶空固相微萃取(HS-SPME)的采样程序,并将其与气相色谱-飞行时间质谱(GC-TOFMS)联用,用于获得啤酒挥发性成分的指纹图谱(GC 图谱)。在一年的时间里,共采集了 265 种特种啤酒样品,目的是根据分析(剖析)数据区分:(i)标称为 Rochefort 8 的啤酒;(ii)由 Rochefort 6、8、10 种啤酒组成的一组;以及(iii)特拉普派啤酒。为了对数据进行化学计量评估,测试了偏最小二乘判别分析(PLS-DA)、线性判别分析(LDA)和具有多层感知器(ANN-MLP)的人工神经网络。用于区分 Rochefort 6、8、10 种啤酒与其他啤酒的模型获得了最佳预测能力。在这种情况下,所有使用的化学计量工具都提供了 100%的正确分类。对于“特拉普派啤酒与非特拉普派啤酒”模型,预测能力稍差,准确率分别为 93.9%(PLS-DA)、91.9%(LDA)和 97.0%(ANN-MLP),以及“Rochefort 8 与其他啤酒”模型,准确率分别为 87.9%(PLS-DA)和 84.8%(LDA)和 93.9%(ANN-MLP)。除了色谱分析外,还展示了将 SPME(萃取/预浓缩装置)与采用实时直接分析(DART)离子源的高分辨率 TOFMS 直接耦合作为一种具有挑战性的分析方法的潜力。