Suppr超能文献

基于人工神经网络处理挥发性成分模式的蜂蜜产地可追溯性

Traceability of honey origin based on volatiles pattern processing by artificial neural networks.

作者信息

Cajka Tomas, Hajslova Jana, Pudil Frantisek, Riddellova Katerina

机构信息

Institute of Chemical Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Chemistry and Analysis, Technicka 5, 16628 Prague 6, Czech Republic.

出版信息

J Chromatogr A. 2009 Feb 27;1216(9):1458-62. doi: 10.1016/j.chroma.2008.12.066. Epub 2008 Dec 27.

Abstract

Head-space solid-phase microextraction (HS-SPME)-based procedure, coupled to comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGC-TOF-MS), was employed for fast characterisation of honey volatiles. In total, 374 samples were collected over two production seasons in Corsica (n=219) and other European countries (n=155) with the emphasis to confirm the authenticity of the honeys labelled as "Corsica" (protected denomination of origin region). For the chemometric analysis, artificial neural networks with multilayer perceptrons (ANN-MLP) were tested. The best prediction (94.5%) and classification (96.5%) abilities of the ANN-MLP model were obtained when the data from two honey harvests were aggregated in order to improve the model performance compared to separate year harvests.

摘要

基于顶空固相微萃取(HS-SPME)并结合全二维气相色谱-飞行时间质谱(GCxGC-TOF-MS)的方法被用于快速表征蜂蜜挥发物。在两个生产季节里,总共收集了374个样本,其中来自科西嘉岛的有219个,来自其他欧洲国家的有155个,重点是确认标记为“科西嘉岛”(受保护的原产地名称地区)的蜂蜜的真实性。对于化学计量分析,测试了具有多层感知器的人工神经网络(ANN-MLP)。当将两个蜂蜜收获季的数据汇总时,ANN-MLP模型获得了最佳预测能力(94.5%)和分类能力(96.5%),与单独年份的收获数据相比,这提高了模型性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验