Suppr超能文献

表面形貌和细胞毒性对巨噬细胞响应氧化锌纳米棒的贡献。

Contributions of surface topography and cytotoxicity to the macrophage response to zinc oxide nanorods.

机构信息

Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.

出版信息

Biomaterials. 2010 Apr;31(11):2999-3007. doi: 10.1016/j.biomaterials.2009.12.055. Epub 2010 Jan 15.

Abstract

Macrophages associated with implanted biomaterials are primary mediators of chronic inflammation and foreign body reaction to the implant. Hence, various approaches have been investigated to modulate macrophage interactions with biomaterial surfaces to mitigate inflammatory responses. Nanostructured materials possess unique surface properties, and nanotopography has been reported to modulate cell adhesion and viability in a cell type-dependent manner. Zinc oxide (ZnO) has been investigated in a number of biomedical applications and surfaces presenting well-controlled nanorod structures of ZnO have recently been developed. In order to investigate the influence of nanotopography on macrophage adhesive response, we evaluated macrophage adhesion and viability on ZnO nanorods, compared to a relatively flat sputtered ZnO controls and using glass substrates for reference. We found that although macrophages are capable of initially adhering to and spreading on ZnO nanorod substrates, the number of adherent macrophages on ZnO nanorods was reduced compared to ZnO flat substrate and glass. Additionally adherent macrophage number on ZnO flat substrate was reduced as compared to glass. While these data suggest nanotopography may modulate macrophage adhesion, reduced cell viability on both sputtered and nanorod ZnO substrate indicates appreciable toxicity associated with ZnO. Cell death was apparently not apoptotic, given the lack of activated caspase-3 immunostaining. A decrease in viable macrophage numbers when ZnO substrates were present in the same media verified the role of ZnO substrate dissolution, and dissolved levels of Zn in culture media were quantified. In order to determine long-term physiological responses, ZnO nanorod-coated and sputtered ZnO-coated polyethylene terephthalate (PET) discs were implanted subcutaneously in mice for 14 d. Upon implantation, both ZnO-coated discs resulted in a discontinuous cellular fibrous capsule indicative of unresolved inflammation, in contrast to uncoated PET discs, which resulted in typical foreign body capsule formation. In conclusion, although ZnO substrates presenting nanorod topography have previously been shown to modulate cellular adhesion in a topography-dependent fashion for specific cell types, this work demonstrates that for primary murine macrophages, cell adhesion and viability correlate to both nanotopography and toxicity of dissolved Zn, parameters which are likely interdependent.

摘要

与植入生物材料相关的巨噬细胞是慢性炎症和异物反应的主要介导者。因此,已经研究了各种方法来调节巨噬细胞与生物材料表面的相互作用,以减轻炎症反应。纳米结构材料具有独特的表面特性,据报道,纳米形貌以依赖于细胞类型的方式调节细胞黏附和活力。氧化锌 (ZnO) 已在许多生物医学应用中进行了研究,并且最近已经开发出呈现出良好控制的 ZnO 纳米棒结构的表面。为了研究纳米形貌对巨噬细胞黏附反应的影响,我们评估了巨噬细胞在 ZnO 纳米棒上的黏附和活力,与相对平坦的溅射 ZnO 对照相比,并以玻璃基板作为参考。我们发现,尽管巨噬细胞能够最初黏附和在 ZnO 纳米棒基板上扩散,但与 ZnO 平坦基板和玻璃相比,黏附在 ZnO 纳米棒上的巨噬细胞数量减少。此外,与玻璃相比,在 ZnO 平坦基板上黏附的巨噬细胞数量减少。虽然这些数据表明纳米形貌可能调节巨噬细胞黏附,但溅射和纳米棒 ZnO 基板上细胞活力的降低表明与 ZnO 相关的毒性相当大。由于缺乏激活的 caspase-3 免疫染色,细胞死亡显然不是凋亡。当 ZnO 基板存在于相同的培养基中时,存活巨噬细胞数量的减少证实了 ZnO 基板溶解的作用,并定量了培养基中溶解的 Zn 水平。为了确定长期的生理反应,将 ZnO 纳米棒涂层和溅射 ZnO 涂层的聚对苯二甲酸乙二醇酯 (PET) 圆盘植入小鼠皮下 14 天。植入后,两种 ZnO 涂层的圆盘都导致不连续的细胞纤维囊,表明存在未解决的炎症,与未涂层的 PET 圆盘形成典型的异物囊形成形成对比。总之,尽管先前已经表明呈现纳米棒形貌的 ZnO 基板以依赖于形貌的方式调节特定细胞类型的细胞黏附,但这项工作表明,对于原代鼠巨噬细胞,细胞黏附和活力与溶解 Zn 的纳米形貌和毒性相关,这些参数可能相互依赖。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验