Division of Biochemical Pharmacology, Department of Pharmaceutical Bioscience, Uppsala Biomedical Center, P.O. Box 591, SE-751 24 Uppsala, Sweden; Laboratori de Microbiologia, Facultat de Farmàcia, Barcelona E-08028, Spain.
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden.
J Biol Chem. 2010 Mar 26;285(13):9339-9345. doi: 10.1074/jbc.M109.078147. Epub 2010 Jan 14.
We have studied oxygenation of fatty acids by cell extract of Pseudomonas aeruginosa 42A2. Oleic acid ((9Z)-18:1) was transformed to (10S)-hydroperoxy-(8E)-octadecenoic acid ((10S)-HPOME) and to (7S,10S)-dihydroxy-(8E)-octadecenoic acid (7,10-DiHOME). Experiments under oxygen-18 showed that 7,10-DiHOME contained oxygen from air and was formed sequentially from (10S)-HPOME by isomerization. (10R)-HPOME was not isomerized. The (10S)-dioxygenase and hydroperoxide isomerase activities co-eluted on ion exchange chromatography and on gel filtration with an apparent molecular size of approximately 50 kDa. 16:1n-7, 18:2n-6, and 20:1n-11 were also oxygenated to 7,10-dihydroxy fatty acids, and (8Z)-18:1 was oxygenated to 6,9-dihydroxy-(7E)-octadecenoic acid. A series of fatty acids with the double bond positioned closer to ((6Z)-18:1, (5Z,9Z)-18:2) or more distant from the carboxyl group ((11Z)-, (13Z)-, and (15Z)-18:1) were poor substrates. The oxygenation mechanism was studied with [7S-(2)H]18:1n-9, [7R-(2)H]18:2n-6, and [8R-(2)H]18:2n-6 as substrates. The pro-R hydrogen at C-8 was lost in the biosynthesis of (10S)-HPODE, whereas the pro-S hydrogen was lost and the pro-R hydrogen was retained at C-7 during biosynthesis of the 7,10-dihydroxy metabolites. Analysis of the fatty acid composition of P. aeruginosa revealed relatively large amounts of (9E/Z)-16:1 and (11E/Z)-18:1 and only traces of 18:1n-9. We found that (11Z)-18:1 (vaccenic acid) was transformed to (11S,14S)-dihydroxy-(12E)-octadecenoic acid and to a mixture of 11- and 12-HPOME, possibly due to reverse orientation of (11Z)-18:1 at the active site compared with oleic acid. The reaction mechanism of the hydroperoxide isomerase suggests catalytic similarities to cytochrome P450.
我们研究了铜绿假单胞菌 42A2 细胞提取物对脂肪酸的氧化作用。油酸((9Z)-18:1)被转化为(10S)-过氧-(8E)-十八碳烯酸((10S)-HPOME)和(7S,10S)-二羟基-(8E)-十八碳烯酸(7,10-DiHOME)。在氧-18 条件下的实验表明,7,10-DiHOME 含有空气中的氧,并且通过异构化从(10S)-HPOME 顺序形成。(10R)-HPOME 没有异构化。(10S)-双加氧酶和过氧化物异构酶活性在离子交换层析和凝胶过滤中共同洗脱,表观分子量约为 50 kDa。16:1n-7、18:2n-6 和 20:1n-11 也被氧化为 7,10-二羟基脂肪酸,(8Z)-18:1 被氧化为 6,9-二羟基-(7E)-十八碳烯酸。一系列双键位置更靠近羧基的脂肪酸((6Z)-18:1、(5Z,9Z)-18:2)或更远((11Z)-、(13Z)-和(15Z)-18:1)是较差的底物。通过[7S-(2)H]18:1n-9、[7R-(2)H]18:2n-6 和[8R-(2)H]18:2n-6 作为底物研究了氧合机制。C-8 上的反式氢在(10S)-HPODE 的生物合成中丢失,而在 7,10-二羟基代谢物的生物合成中,顺式氢丢失,反式氢保留在 C-7 上。铜绿假单胞菌脂肪酸组成的分析表明,(9E/Z)-16:1 和(11E/Z)-18:1 的含量相对较大,而 18:1n-9 的含量仅为痕量。我们发现(11Z)-18:1(蓖麻油酸)被转化为(11S,14S)-二羟基-(12E)-十八碳烯酸和 11-和 12-HPOME 的混合物,可能是由于(11Z)-18:1 在活性部位的定向与油酸相反。过氧化物异构酶的反应机制表明与细胞色素 P450 具有催化相似性。