Suppr超能文献

铜绿假单胞菌 42A2 的加氧酶和过氧化物异构酶对不饱和脂肪酸的氧化的生化特性。

Biochemical characterization of the oxygenation of unsaturated fatty acids by the dioxygenase and hydroperoxide isomerase of Pseudomonas aeruginosa 42A2.

机构信息

Division of Biochemical Pharmacology, Department of Pharmaceutical Bioscience, Uppsala Biomedical Center, P.O. Box 591, SE-751 24 Uppsala, Sweden; Laboratori de Microbiologia, Facultat de Farmàcia, Barcelona E-08028, Spain.

Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden.

出版信息

J Biol Chem. 2010 Mar 26;285(13):9339-9345. doi: 10.1074/jbc.M109.078147. Epub 2010 Jan 14.

Abstract

We have studied oxygenation of fatty acids by cell extract of Pseudomonas aeruginosa 42A2. Oleic acid ((9Z)-18:1) was transformed to (10S)-hydroperoxy-(8E)-octadecenoic acid ((10S)-HPOME) and to (7S,10S)-dihydroxy-(8E)-octadecenoic acid (7,10-DiHOME). Experiments under oxygen-18 showed that 7,10-DiHOME contained oxygen from air and was formed sequentially from (10S)-HPOME by isomerization. (10R)-HPOME was not isomerized. The (10S)-dioxygenase and hydroperoxide isomerase activities co-eluted on ion exchange chromatography and on gel filtration with an apparent molecular size of approximately 50 kDa. 16:1n-7, 18:2n-6, and 20:1n-11 were also oxygenated to 7,10-dihydroxy fatty acids, and (8Z)-18:1 was oxygenated to 6,9-dihydroxy-(7E)-octadecenoic acid. A series of fatty acids with the double bond positioned closer to ((6Z)-18:1, (5Z,9Z)-18:2) or more distant from the carboxyl group ((11Z)-, (13Z)-, and (15Z)-18:1) were poor substrates. The oxygenation mechanism was studied with [7S-(2)H]18:1n-9, [7R-(2)H]18:2n-6, and [8R-(2)H]18:2n-6 as substrates. The pro-R hydrogen at C-8 was lost in the biosynthesis of (10S)-HPODE, whereas the pro-S hydrogen was lost and the pro-R hydrogen was retained at C-7 during biosynthesis of the 7,10-dihydroxy metabolites. Analysis of the fatty acid composition of P. aeruginosa revealed relatively large amounts of (9E/Z)-16:1 and (11E/Z)-18:1 and only traces of 18:1n-9. We found that (11Z)-18:1 (vaccenic acid) was transformed to (11S,14S)-dihydroxy-(12E)-octadecenoic acid and to a mixture of 11- and 12-HPOME, possibly due to reverse orientation of (11Z)-18:1 at the active site compared with oleic acid. The reaction mechanism of the hydroperoxide isomerase suggests catalytic similarities to cytochrome P450.

摘要

我们研究了铜绿假单胞菌 42A2 细胞提取物对脂肪酸的氧化作用。油酸((9Z)-18:1)被转化为(10S)-过氧-(8E)-十八碳烯酸((10S)-HPOME)和(7S,10S)-二羟基-(8E)-十八碳烯酸(7,10-DiHOME)。在氧-18 条件下的实验表明,7,10-DiHOME 含有空气中的氧,并且通过异构化从(10S)-HPOME 顺序形成。(10R)-HPOME 没有异构化。(10S)-双加氧酶和过氧化物异构酶活性在离子交换层析和凝胶过滤中共同洗脱,表观分子量约为 50 kDa。16:1n-7、18:2n-6 和 20:1n-11 也被氧化为 7,10-二羟基脂肪酸,(8Z)-18:1 被氧化为 6,9-二羟基-(7E)-十八碳烯酸。一系列双键位置更靠近羧基的脂肪酸((6Z)-18:1、(5Z,9Z)-18:2)或更远((11Z)-、(13Z)-和(15Z)-18:1)是较差的底物。通过[7S-(2)H]18:1n-9、[7R-(2)H]18:2n-6 和[8R-(2)H]18:2n-6 作为底物研究了氧合机制。C-8 上的反式氢在(10S)-HPODE 的生物合成中丢失,而在 7,10-二羟基代谢物的生物合成中,顺式氢丢失,反式氢保留在 C-7 上。铜绿假单胞菌脂肪酸组成的分析表明,(9E/Z)-16:1 和(11E/Z)-18:1 的含量相对较大,而 18:1n-9 的含量仅为痕量。我们发现(11Z)-18:1(蓖麻油酸)被转化为(11S,14S)-二羟基-(12E)-十八碳烯酸和 11-和 12-HPOME 的混合物,可能是由于(11Z)-18:1 在活性部位的定向与油酸相反。过氧化物异构酶的反应机制表明与细胞色素 P450 具有催化相似性。

相似文献

2
3
Stereoselective oxidation of regioisomeric octadecenoic acids by fatty acid dioxygenases.
J Lipid Res. 2011 Nov;52(11):1995-2004. doi: 10.1194/jlr.M018259. Epub 2011 Aug 18.
4
Reaction mechanism of 5,8-linoleate diol synthase, 10R-dioxygenase, and 8,11-hydroperoxide isomerase of Aspergillus clavatus.
Biochim Biophys Acta. 2010 Apr;1801(4):503-7. doi: 10.1016/j.bbalip.2009.12.012. Epub 2010 Jan 4.
10
Polyunsaturated C fatty acids derivatized with Gly and Ile as an additional tool for studies of the catalytic evolution of fungal 8- and 9-dioxygenases.
Biochim Biophys Acta Mol Cell Biol Lipids. 2018 Nov;1863(11):1378-1387. doi: 10.1016/j.bbalip.2018.08.012. Epub 2018 Aug 24.

引用本文的文献

2
Secretes the Oxylipin Autoinducer Synthases OdsA and OdsB via the Xcp Type 2 Secretion System.
J Bacteriol. 2022 Jul 19;204(7):e0011422. doi: 10.1128/jb.00114-22. Epub 2022 Jun 6.
4
Host- and Microbe-Dependent Dietary Lipid Metabolism in the Control of Allergy, Inflammation, and Immunity.
Front Nutr. 2019 Apr 10;6:36. doi: 10.3389/fnut.2019.00036. eCollection 2019.
5
Oxylipins mediate cell-to-cell communication in .
Commun Biol. 2019 Feb 15;2:66. doi: 10.1038/s42003-019-0310-0. eCollection 2019.
6
Ohr plays a central role in bacterial responses against fatty acid hydroperoxides and peroxynitrite.
Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):E132-E141. doi: 10.1073/pnas.1619659114. Epub 2016 Dec 27.
7
Oxylipins produced by Pseudomonas aeruginosa promote biofilm formation and virulence.
Nat Commun. 2016 Dec 8;7:13823. doi: 10.1038/ncomms13823.
10
Omics approaches in cystic fibrosis research: a focus on oxylipin profiling in airway secretions.
Ann N Y Acad Sci. 2012 Jul;1259(1):1-9. doi: 10.1111/j.1749-6632.2012.06580.x.

本文引用的文献

1
Induction of functional cytochrome P450 and its involvement in degradation of benzoic acid by Phanerochaete chrysosporium.
Biodegradation. 2010 Apr;21(2):297-308. doi: 10.1007/s10532-009-9301-z. Epub 2009 Sep 29.
2
Mechanistic aspects of CYP74 allene oxide synthases and related cytochrome P450 enzymes.
Phytochemistry. 2009 Sep;70(13-14):1522-31. doi: 10.1016/j.phytochem.2009.08.005. Epub 2009 Sep 9.
5
6
Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes.
Nucleic Acids Res. 2009 Jan;37(Database issue):D483-8. doi: 10.1093/nar/gkn861. Epub 2008 Oct 31.
7
Enantiomeric separation and analysis of unsaturated hydroperoxy fatty acids by chiral column chromatography-mass spectrometry.
J Chromatogr B Analyt Technol Biomed Life Sci. 2008 Sep 1;872(1-2):90-8. doi: 10.1016/j.jchromb.2008.07.013. Epub 2008 Jul 18.
8
Nutritionally essential fatty acids and biologically indispensable cyclooxygenases.
Trends Biochem Sci. 2008 Jan;33(1):27-37. doi: 10.1016/j.tibs.2007.09.013. Epub 2007 Dec 26.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验