Institute of Pharmacy, Department of Clinical Pharmacy, Martin-Luther-Universitaet Halle-Wittenberg, 06120 Halle, Germany.
AAPS J. 2010 Jun;12(2):117-29. doi: 10.1208/s12248-009-9164-6. Epub 2010 Jan 15.
Effective therapeutic options for Alzheimer's disease (AD) are limited and much research is currently ongoing. The high attrition rate in drug development is a critical issue. Here, the quantitative pharmacology approach (QP-A) and model-based drug development (MBDD) provide a valuable opportunity to support early selection of the most promising compound and facilitate a fast, efficient, and rational drug development process. The aim of this analysis was to exemplify the QP-A by eventually predicting the clinical outcome of a proof-of-concept (PoC) trial of tesofensine in AD patients from two small phase IIa trials. Retrospective population pharmacokinetic/pharmacodynamic (PK/PD) modeling of tesofensine, its metabolite M1, and assessment scale-cognitive subscale data from two 4-week placebo-controlled studies in 62 mild AD patients was performed using non-linear mixed effects modeling. The final PK/PD model was used to predict data of a negative 14-week phase IIb PoC trial (430 AD patients). For the PK, one-compartment models for tesofensine and M1 with first-order absorption and elimination were sufficient. An extended Emax model including disease progression best described the PK/PD relationship using effect compartments. The placebo effect was also implemented in the final PK/PD model based on a published placebo model developed in a large AD cohort. Various internal evaluation techniques confirmed the reliability and predictive performance of the PK/PD model, which also successfully predicted the 14-week PoC data. For tesofensine, the dose concentration-effect relationship has successfully been described in mild AD patients demonstrating the supportive value of PK/PD models in QP-A/MBDD in early phases of clinical development for decision-making.
用于阿尔茨海默病 (AD) 的有效治疗选择有限,目前有大量研究正在进行。药物开发中的高淘汰率是一个关键问题。在这里,定量药理学方法 (QP-A) 和基于模型的药物开发 (MBDD) 提供了一个有价值的机会,可以支持早期选择最有前途的化合物,并促进快速、高效和合理的药物开发过程。本分析的目的是通过最终预测 tesofensine 在 AD 患者中的概念验证 (PoC) 试验的临床结果来说明 QP-A,该试验来自两项小型 2a 期试验。使用非线性混合效应模型对 tesofensine、其代谢物 M1 以及来自 62 名轻度 AD 患者的两项为期 4 周安慰剂对照研究的评估量表认知子量表数据进行回顾性群体药代动力学/药效学 (PK/PD) 建模。最终的 PK/PD 模型用于预测一项为期 14 周的 2b 期阴性 PoC 试验 (430 名 AD 患者) 的数据。对于 PK,tesofensine 和 M1 的单室模型,具有一阶吸收和消除,足以描述 PK/PD 关系。使用效应室,扩展的 Emax 模型包括疾病进展,可最好地描述 PK/PD 关系。基于在大型 AD 队列中开发的已发表的安慰剂模型,最终的 PK/PD 模型还实施了安慰剂效应。各种内部评估技术证实了 PK/PD 模型的可靠性和预测性能,该模型也成功预测了 14 周的 PoC 数据。对于 tesofensine,在轻度 AD 患者中成功描述了剂量浓度-效应关系,证明了 PK/PD 模型在 QP-A/MBDD 中的支持价值,可用于早期临床开发阶段的决策。