Wang Meihua, Day Roger
Department of Biostatistics, University of Pittsburgh, Pittsburgh 15261, Pennsylvania, USA.
J Biopharm Stat. 2010 Jan;20(1):125-44. doi: 10.1080/10543400903280613.
We present a new adaptive Bayesian method for dose-finding in phase I clinical trials based on both response and toxicity. Although clinical responses are usually rare in phase I cancer trials, molecularly targeted therapy may make clinical responses more likely. In addition, biological responses may be common. Thus responses may be frequent enough to help decide how aggressive a phase I escalation should be. The model assumes that response and toxicity events happen depending on respective dose thresholds for the individual, assuming that the thresholds jointly follow a bivariate log-normal distribution or a mixture. The design utilizes prior information about the population threshold distribution as well as accumulated data. The next dose is assigned to maximize a patient-oriented expected utility integrated over the current posterior distribution. The design is evaluated through simulation with population parameters equaling estimates from early Gleevec trials. This exercise provides evidence for the value of the use of the proposed design for future clinical trials.
我们提出了一种基于反应和毒性的用于I期临床试验剂量探索的新型自适应贝叶斯方法。尽管在I期癌症试验中临床反应通常很少见,但分子靶向治疗可能会使临床反应更有可能出现。此外,生物学反应可能很常见。因此,反应可能频繁到足以帮助决定I期剂量递增应该激进到何种程度。该模型假设反应和毒性事件的发生取决于个体各自的剂量阈值,假定这些阈值联合遵循双变量对数正态分布或混合分布。该设计利用了关于总体阈值分布的先验信息以及累积数据。分配下一个剂量以最大化在当前后验分布上积分的以患者为导向的期望效用。通过将总体参数设为等于早期格列卫试验的估计值进行模拟来评估该设计。这项工作为所提出的设计在未来临床试验中的应用价值提供了证据。