Matsumoto Tomoshige, Iwamoto Tomotada
Osaka Prefectural Hospital Organization Osaka Prefectural Medical Center for Respiratory and Allergic Diseases.
Kekkaku. 2009 Dec;84(12):783-4.
Before the availability of high-resolution genotyping tools in 1990s, there was a prevailing dogma of little genomic sequence diversity in Mycobacterium tuberculosis. Due to the low levels of genetic variation, it was assumed that M. tuberculosis exhibit very little phenotypic variation in immunologic and virulence factors. The fingerprinting method based on restriction fragment length polymorphisms (RFLP) of IS6110 insertion sequences had unveiled the underestimation of the sequence variation in M. tuberculosis and the importance of strain-to-strain variation for understanding pathogenesis, immune mechanisms, bacterial evolution, and host adaptation. This method became a gold standard for strain differentiation in the molecular epidemiological study. It had lead to a profusion of studies in molecular epidemiology such as the detection of unsuspected transmission, the estimation of the extent of recent transmission, the identification of laboratory cross-contamination, the identification of outbreaks, and distinction between reinfection and relapse. This, in 1990s, is the opening of the molecular epidemiology of tuberculosis. After the completion of genome project of the M. tuberculosis laboratory strain H37Rv, some of the clinical isolates were completely sequenced. This prompted the in silico genome comparison and identified various genomic markers which can give a unifying framework for both epidemiology and evolutionary analysis of M. tuberculosis population. Of them, variable numbers of tandem repeats (VNTR) was found as the most promising PCR-based method which can provide adequate discrimination of M. tuberculosis strains in many cases, including the estimation of M. tuberculosis transmission and the identification of genetic lineages. PCR-based VNTR analysis is easy, rapid, and highly specific and can generate portable digit-based data, unlike the analog information obtained from IS6110 RFLP which is labor intensive. In this regards, investigators can easily compare the genotypic data of independent studies between different laboratories. With the advantages, VNTR surpassed IS6110 RFLP and became the first line genotyping method in molecular epidemiology. One of the most attractive potentials on this method is its applicability for establishment of the database of M. tuberculosis genotype which covers not only local area but also world wide scale. This would open the door to "in silico epidemiology" which brings a breakthrough on the current TB control program. The optimization and standardization of the combination of VNTR loci for strain genotyping is the only but hard issue for the development of global database system. Road to the global Mtb genotype database is hard, but we believe, "Yes, We Can!". Another attractive potential of VNTR is its use for phylogenetic analysis, although more intensive research on this with using comprehensive marker sets, such as large sequence polymorphisms and single-nucleotide polymorphisms are required. Again, with the advantages of VNTR analysis, i.e., easy, rapid, specific, and digit-based data, VNTR became the first line method in molecular epidemiology. Molecular epidemiology of tuberculosis is expanding its research field from the investigation of TB transmission to more basic science such as evolution and phylogeographic distribution. In this symposium, we have invited four opinion leaders in molecular epidemiology of TB in Japan who are talking about each title as followed. 1. Establishment of the standard VNTR analysis systems for Tuberculosis (TB) and preparation of databases for TB genotyping: Shinji MAEDA and Yoshiro MURASE (Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, JATA). We have already reported the JATA (12)-VNTR system for TB genotyping in Japan. However, by comparison of cluster formation rate, the discrimination power of JATA (12)-VNTR was lower than that of IS6110 RFLP analysis. Therefore, we improved the JATA (12)-VNTR system for developing discrimination power. By addition of 3 loci (ETR-A, VNTR-1982 and VNTR-2163 a) to JATA (12)-VNTR, we established new JATA (15)-VNTR. We found that the discrimination power of JATA (15)-VNTR was almost the same as that of RFLP analysis. 2. Molecular epidemiology of Mycobacterium tuberculosis reviewed by molecular epidemiology of other pathogenic bacteria: Eiji YOKOYAMA (Division of Bacteriology, Chiba Prefectural Institute of Public Health). Molecular epidemiology of M. tuberculosis should be progressed to two goals. First is the short-term goal that intends to elucidate the unapparent route of transmission of the organism. Second is the long-term goal that intends to ascertain the phylogeny of the organism. The combination of VNTR loci should be changed according to the goals of molecular epidemiology of the organism. 3. Progress of the research in molecular epidemiology of Mycobacterium tuberculosis: Tomotada IWAMOTO (Department of Microbiology, Kobe Institute of Health). In the past decade, molecular epidemiology of tuberculosis brought significant insights into the transmission of tuberculosis, genetic diversity of M. tuberculosis, population structure and geographical distribution of M. tuberculosis, etc. In the advanced stage of the molecular epidemiological study, we expect to change the current geno-typing based molecular epidemiology to whole genome-typing based molecular epidemiology on the basis of the rapid innovation of next-generation sequencing technology. 4. Clinical application of molecular epidemiology of tuberculosis: Tomoshige MATSUMOTO (Department of Clinical Research and Development, Osaka Prefectural Medical Center for Respiratory and Allergic Diseases). The molecular epidemiology can be applied in clinical practice. We showed some examples about usefulness of the clinical application of molecular epidemiology, especially using variable number of tandem repeats (VNTR) analysis. One example we showed: using VNTR, we can know whether two tuberculosis bacilli which developed from the patients, who have close contact, are the same or not in a few days; Especially, when one patient suffers from multidrug-resistant (MDR) strain of or extensively drug resistant (XDR) of tuberculosis, we can easily know whether the other suffers from MDR/XDR tuberculosis or not. The other example we showed: we can know relapse, reinfection, or laboratory contamination by using VNTR in a few days when a patient shows bacteriological relapse during the treatment. By introducing VNTR to clinical practice, we can diminish days of inappropriate hospitalization. Because VNTR data are numerical, we can easily construct VNTR database, compare data, and survey emergence of MDR/XDR-tuberculosis.
在20世纪90年代高分辨率基因分型工具出现之前,关于结核分枝杆菌存在一种普遍的教条,即其基因组序列多样性很少。由于遗传变异水平较低,人们认为结核分枝杆菌在免疫和毒力因子方面表现出的表型变异很少。基于IS6110插入序列的限制性片段长度多态性(RFLP)的指纹图谱方法揭示了对结核分枝杆菌序列变异的低估,以及菌株间变异对于理解发病机制、免疫机制、细菌进化和宿主适应性的重要性。该方法成为分子流行病学研究中菌株鉴别分化的金标准。它引发了大量分子流行病学研究,如检测未被怀疑的传播、估计近期传播的程度、识别实验室交叉污染、识别疫情暴发以及区分再感染和复发。这就是20世纪90年代结核病分子流行病学的开端。在结核分枝杆菌实验室菌株H37Rv的基因组计划完成后,对一些临床分离株进行了全序列测定。这促使了在计算机上进行基因组比较,并识别出各种基因组标记,这些标记可为结核分枝杆菌群体的流行病学和进化分析提供一个统一的框架。其中,可变数目串联重复序列(VNTR)被发现是最有前景的基于PCR的方法,在许多情况下,它能够对结核分枝杆菌菌株进行充分鉴别,包括估计结核分枝杆菌的传播和识别遗传谱系。基于PCR的VNTR分析简便、快速且高度特异,并且能够生成便于携带的数字化数据,这与从IS6110 RFLP获得的类似信息不同,后者需要大量人力。在这方面,研究人员可以轻松比较不同实验室独立研究的基因型数据。凭借这些优势,VNTR超越了IS6110 RFLP,成为分子流行病学中的一线基因分型方法。这种方法最具吸引力的潜力之一在于其适用于建立不仅覆盖局部地区而且覆盖全球范围的结核分枝杆菌基因型数据库。这将为“计算机流行病学”打开大门,从而给当前的结核病控制项目带来突破。优化和标准化用于菌株基因分型的VNTR位点组合是全球数据库系统开发中唯一但艰巨的问题。通往全球结核分枝杆菌基因型数据库的道路艰难,但我们相信,“是的,我们能!”。VNTR的另一个有吸引力的潜力在于其用于系统发育分析,尽管需要使用更全面的标记集,如大序列多态性和单核苷酸多态性对其进行更深入的研究。同样,凭借VNTR分析的优势,即简便、快速、特异和数字化数据,VNTR成为分子流行病学中的一线方法。结核病分子流行病学正在将其研究领域从结核病传播调查扩展到更基础的科学领域,如进化和系统地理分布。在本次研讨会上,我们邀请了日本结核病分子流行病学领域的四位意见领袖,他们将分别就以下主题进行发言。1. 结核病(TB)标准VNTR分析系统的建立及TB基因分型数据库的准备:前田真司和村濑义郎(日本结核病协会结核病参考与研究部)。我们已经报道了用于日本TB基因分型的JATA(12)-VNTR系统。然而,通过聚类形成率比较,JATA(12)-VNTR的鉴别能力低于IS6110 RFLP分析。因此,我们改进了JATA(12)-VNTR系统以提高鉴别能力。通过在JATA(12)-VNTR中添加3个位点(ETR-A、VNTR-1982和VNTR-2163 a),我们建立了新的JATA(15)-VNTR。我们发现JATA(15)-VNTR的鉴别能力与RFLP分析几乎相同。2. 通过其他病原菌的分子流行病学审视结核分枝杆菌的分子流行病学:横山英二(千叶县公共卫生研究所细菌学部)。结核分枝杆菌的分子流行病学应朝着两个目标发展。第一个是短期目标,旨在阐明该病原体不明显的传播途径。第二个是长期目标,旨在确定该病原体的系统发育。VNTR位点的组合应根据该病原体分子流行病学的目标进行改变。3. 结核分枝杆菌分子流行病学研究进展:岩本友忠(神户健康研究所微生物学部)。在过去十年中,结核病分子流行病学在结核病传播、结核分枝杆菌的遗传多样性、结核分枝杆菌的群体结构和地理分布等方面带来了重要见解。在分子流行病学研究的高级阶段,基于下一代测序技术的快速创新,我们期望将当前基于基因分型 的分子流行病学转变为基于全基因组分型的分子流行病学。4. 结核病分子流行病学的临床应用:松本智重(大阪府立呼吸与过敏性疾病医疗中心临床研发部)。分子流行病学可应用于临床实践。我们展示了一些分子流行病学临床应用实用性的例子,特别是使用可变数目串联重复序列(VNTR)分析。我们展示的一个例子:使用VNTR,我们可以在几天内知道来自密切接触患者的两种结核杆菌是否相同;特别是当一名患者感染耐多药(MDR)或广泛耐药(XDR)结核菌株时,我们可以轻松知道另一名患者是否感染MDR/XDR结核病。我们展示的另一个例子:当患者在治疗期间出现细菌学复发时,我们可以在几天内通过使用VNTR知道是复发、再感染还是实验室污染。通过将VNTR引入临床实践,我们可以减少不适当住院的天数。由于VNTR数据是数字化的,我们可以轻松构建VNTR数据库、比较数据并调查MDR/XDR结核病的出现情况。