文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

[Future prospects of molecular epidemiology in tuberculosis].

作者信息

Matsumoto Tomoshige, Iwamoto Tomotada

机构信息

Osaka Prefectural Hospital Organization Osaka Prefectural Medical Center for Respiratory and Allergic Diseases.

出版信息

Kekkaku. 2009 Dec;84(12):783-4.


DOI:
PMID:20077862
Abstract

Before the availability of high-resolution genotyping tools in 1990s, there was a prevailing dogma of little genomic sequence diversity in Mycobacterium tuberculosis. Due to the low levels of genetic variation, it was assumed that M. tuberculosis exhibit very little phenotypic variation in immunologic and virulence factors. The fingerprinting method based on restriction fragment length polymorphisms (RFLP) of IS6110 insertion sequences had unveiled the underestimation of the sequence variation in M. tuberculosis and the importance of strain-to-strain variation for understanding pathogenesis, immune mechanisms, bacterial evolution, and host adaptation. This method became a gold standard for strain differentiation in the molecular epidemiological study. It had lead to a profusion of studies in molecular epidemiology such as the detection of unsuspected transmission, the estimation of the extent of recent transmission, the identification of laboratory cross-contamination, the identification of outbreaks, and distinction between reinfection and relapse. This, in 1990s, is the opening of the molecular epidemiology of tuberculosis. After the completion of genome project of the M. tuberculosis laboratory strain H37Rv, some of the clinical isolates were completely sequenced. This prompted the in silico genome comparison and identified various genomic markers which can give a unifying framework for both epidemiology and evolutionary analysis of M. tuberculosis population. Of them, variable numbers of tandem repeats (VNTR) was found as the most promising PCR-based method which can provide adequate discrimination of M. tuberculosis strains in many cases, including the estimation of M. tuberculosis transmission and the identification of genetic lineages. PCR-based VNTR analysis is easy, rapid, and highly specific and can generate portable digit-based data, unlike the analog information obtained from IS6110 RFLP which is labor intensive. In this regards, investigators can easily compare the genotypic data of independent studies between different laboratories. With the advantages, VNTR surpassed IS6110 RFLP and became the first line genotyping method in molecular epidemiology. One of the most attractive potentials on this method is its applicability for establishment of the database of M. tuberculosis genotype which covers not only local area but also world wide scale. This would open the door to "in silico epidemiology" which brings a breakthrough on the current TB control program. The optimization and standardization of the combination of VNTR loci for strain genotyping is the only but hard issue for the development of global database system. Road to the global Mtb genotype database is hard, but we believe, "Yes, We Can!". Another attractive potential of VNTR is its use for phylogenetic analysis, although more intensive research on this with using comprehensive marker sets, such as large sequence polymorphisms and single-nucleotide polymorphisms are required. Again, with the advantages of VNTR analysis, i.e., easy, rapid, specific, and digit-based data, VNTR became the first line method in molecular epidemiology. Molecular epidemiology of tuberculosis is expanding its research field from the investigation of TB transmission to more basic science such as evolution and phylogeographic distribution. In this symposium, we have invited four opinion leaders in molecular epidemiology of TB in Japan who are talking about each title as followed. 1. Establishment of the standard VNTR analysis systems for Tuberculosis (TB) and preparation of databases for TB genotyping: Shinji MAEDA and Yoshiro MURASE (Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, JATA). We have already reported the JATA (12)-VNTR system for TB genotyping in Japan. However, by comparison of cluster formation rate, the discrimination power of JATA (12)-VNTR was lower than that of IS6110 RFLP analysis. Therefore, we improved the JATA (12)-VNTR system for developing discrimination power. By addition of 3 loci (ETR-A, VNTR-1982 and VNTR-2163 a) to JATA (12)-VNTR, we established new JATA (15)-VNTR. We found that the discrimination power of JATA (15)-VNTR was almost the same as that of RFLP analysis. 2. Molecular epidemiology of Mycobacterium tuberculosis reviewed by molecular epidemiology of other pathogenic bacteria: Eiji YOKOYAMA (Division of Bacteriology, Chiba Prefectural Institute of Public Health). Molecular epidemiology of M. tuberculosis should be progressed to two goals. First is the short-term goal that intends to elucidate the unapparent route of transmission of the organism. Second is the long-term goal that intends to ascertain the phylogeny of the organism. The combination of VNTR loci should be changed according to the goals of molecular epidemiology of the organism. 3. Progress of the research in molecular epidemiology of Mycobacterium tuberculosis: Tomotada IWAMOTO (Department of Microbiology, Kobe Institute of Health). In the past decade, molecular epidemiology of tuberculosis brought significant insights into the transmission of tuberculosis, genetic diversity of M. tuberculosis, population structure and geographical distribution of M. tuberculosis, etc. In the advanced stage of the molecular epidemiological study, we expect to change the current geno-typing based molecular epidemiology to whole genome-typing based molecular epidemiology on the basis of the rapid innovation of next-generation sequencing technology. 4. Clinical application of molecular epidemiology of tuberculosis: Tomoshige MATSUMOTO (Department of Clinical Research and Development, Osaka Prefectural Medical Center for Respiratory and Allergic Diseases). The molecular epidemiology can be applied in clinical practice. We showed some examples about usefulness of the clinical application of molecular epidemiology, especially using variable number of tandem repeats (VNTR) analysis. One example we showed: using VNTR, we can know whether two tuberculosis bacilli which developed from the patients, who have close contact, are the same or not in a few days; Especially, when one patient suffers from multidrug-resistant (MDR) strain of or extensively drug resistant (XDR) of tuberculosis, we can easily know whether the other suffers from MDR/XDR tuberculosis or not. The other example we showed: we can know relapse, reinfection, or laboratory contamination by using VNTR in a few days when a patient shows bacteriological relapse during the treatment. By introducing VNTR to clinical practice, we can diminish days of inappropriate hospitalization. Because VNTR data are numerical, we can easily construct VNTR database, compare data, and survey emergence of MDR/XDR-tuberculosis.

摘要

相似文献

[1]
[Future prospects of molecular epidemiology in tuberculosis].

Kekkaku. 2009-12

[2]
[New era in molecular epidemiology of tuberculosis in Japan].

Kekkaku. 2006-11

[3]
[Exogenous re-infection in tuberculosis].

Kekkaku. 2006-2

[4]
[Development of antituberculous drugs: current status and future prospects].

Kekkaku. 2006-12

[5]
High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology.

Proc Natl Acad Sci U S A. 2001-2-13

[6]
[Molecular epidemiology of Mycobacterium tuberculosis and its prospect based on variable number of tandem repeat (VNTR) genotyping--a strategy in Osaka City, Japan].

Kekkaku. 2010-12

[7]
[Recent progress in mycobacteriology].

Kekkaku. 2007-10

[8]
[Non-tuberculous mycobacteriosis. What has been coming out].

Kekkaku. 2011-2

[9]
[Genetic research about Mycobacterium avium complex].

Kekkaku. 2011-2

[10]
[Findings and ongoing research in the molecular epidemiology of tuberculosis].

Kekkaku. 2009-2

引用本文的文献

[1]
Analysis of 605 tuberculosis outbreaks in Japan, 1993-2015: time, place and transmission site.

Epidemiol Infect. 2021-3-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索