Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA.
Semin Cell Dev Biol. 2010 Aug;21(6):575-81. doi: 10.1016/j.semcdb.2010.01.003. Epub 2010 Jan 14.
Mitochondrial dynamics, the fusion and fission of individual mitochondrial units, is critical to the exchange of the metabolic, genetic and proteomic contents of individual mitochondria. In this regard, fusion and fission events have been shown to modulate mitochondrial bioenergetics, as well as several cellular processes including fuel sensing, ATP production, autophagy, apoptosis, and the cell cycle. Regulation of the dynamic events of fusion and fission occur at two redundant and interactive levels. Locally, the microenvironment of the individual mitochondrion can alter its ability to fuse, divide or move through the cell. Globally, nuclear-encoded processes and cellular ionic and second messenger systems can alter or activate mitochondrial proteins, regulate mitochondrial dynamics and concomitantly change the condition of the mitochondrial population. In this review we investigate the different global and local signals that control mitochondrial biology. This discussion is carried out to clarify the different signals that impact the status of the mitochondrial population.
线粒体动力学,即单个线粒体单位的融合和裂变,对于单个线粒体代谢、遗传和蛋白质组学内容的交换至关重要。在这方面,融合和裂变事件已被证明可以调节线粒体生物能学,以及包括燃料感应、ATP 产生、自噬、细胞凋亡和细胞周期在内的几种细胞过程。融合和裂变的动态事件的调节发生在两个冗余和相互作用的水平上。在局部,单个线粒体的微环境可以改变其融合、分裂或在细胞内移动的能力。在全局范围内,核编码过程和细胞离子和第二信使系统可以改变或激活线粒体蛋白,调节线粒体动力学,并随之改变线粒体群体的状态。在这篇综述中,我们研究了控制线粒体生物学的不同全局和局部信号。进行这一讨论是为了阐明影响线粒体群体状态的不同信号。