Suppr超能文献

细胞器与细胞对线粒体动态的控制。

Organellar vs cellular control of mitochondrial dynamics.

机构信息

Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA.

出版信息

Semin Cell Dev Biol. 2010 Aug;21(6):575-81. doi: 10.1016/j.semcdb.2010.01.003. Epub 2010 Jan 14.

Abstract

Mitochondrial dynamics, the fusion and fission of individual mitochondrial units, is critical to the exchange of the metabolic, genetic and proteomic contents of individual mitochondria. In this regard, fusion and fission events have been shown to modulate mitochondrial bioenergetics, as well as several cellular processes including fuel sensing, ATP production, autophagy, apoptosis, and the cell cycle. Regulation of the dynamic events of fusion and fission occur at two redundant and interactive levels. Locally, the microenvironment of the individual mitochondrion can alter its ability to fuse, divide or move through the cell. Globally, nuclear-encoded processes and cellular ionic and second messenger systems can alter or activate mitochondrial proteins, regulate mitochondrial dynamics and concomitantly change the condition of the mitochondrial population. In this review we investigate the different global and local signals that control mitochondrial biology. This discussion is carried out to clarify the different signals that impact the status of the mitochondrial population.

摘要

线粒体动力学,即单个线粒体单位的融合和裂变,对于单个线粒体代谢、遗传和蛋白质组学内容的交换至关重要。在这方面,融合和裂变事件已被证明可以调节线粒体生物能学,以及包括燃料感应、ATP 产生、自噬、细胞凋亡和细胞周期在内的几种细胞过程。融合和裂变的动态事件的调节发生在两个冗余和相互作用的水平上。在局部,单个线粒体的微环境可以改变其融合、分裂或在细胞内移动的能力。在全局范围内,核编码过程和细胞离子和第二信使系统可以改变或激活线粒体蛋白,调节线粒体动力学,并随之改变线粒体群体的状态。在这篇综述中,我们研究了控制线粒体生物学的不同全局和局部信号。进行这一讨论是为了阐明影响线粒体群体状态的不同信号。

相似文献

1
Organellar vs cellular control of mitochondrial dynamics.细胞器与细胞对线粒体动态的控制。
Semin Cell Dev Biol. 2010 Aug;21(6):575-81. doi: 10.1016/j.semcdb.2010.01.003. Epub 2010 Jan 14.
2
Mitochondrial fission and fusion dynamics: the long and short of it.线粒体分裂与融合动力学:其来龙去脉
Cell Death Differ. 2008 Jul;15(7):1147-52. doi: 10.1038/cdd.2008.57. Epub 2008 Apr 25.
5
Mitochondrial hyperfusion: a friend or a foe.线粒体过度融合:是敌是友?
Biochem Soc Trans. 2020 Apr 29;48(2):631-644. doi: 10.1042/BST20190987.
6
Mitochondrial fusion proteins: dual regulators of morphology and metabolism.线粒体融合蛋白:形态和代谢的双重调节剂。
Semin Cell Dev Biol. 2010 Aug;21(6):566-74. doi: 10.1016/j.semcdb.2010.01.002. Epub 2010 Jan 15.
7
OPA1 (dys)functions.OPA1(功能障碍)。
Semin Cell Dev Biol. 2010 Aug;21(6):593-8. doi: 10.1016/j.semcdb.2009.12.012. Epub 2010 Jan 4.
8
Mitochondrial biogenesis: pharmacological approaches.线粒体生物合成:药理学方法。
Curr Pharm Des. 2014;20(35):5507-9. doi: 10.2174/138161282035140911142118.
10
Positioning mitochondrial plasticity within cellular signaling cascades.将线粒体可塑性定位在细胞信号级联反应中。
Biochim Biophys Acta. 2009 Jan;1793(1):154-70. doi: 10.1016/j.bbamcr.2008.07.008. Epub 2008 Jul 23.

引用本文的文献

10
Mitochondria and the Brain: Bioenergetics and Beyond.线粒体与大脑:生物能量学及其他。
Neurotox Res. 2019 Aug;36(2):219-238. doi: 10.1007/s12640-019-00061-7. Epub 2019 Jun 1.

本文引用的文献

9
SLP-2 is required for stress-induced mitochondrial hyperfusion.应激诱导的线粒体过度融合需要SLP-2。
EMBO J. 2009 Jun 3;28(11):1589-600. doi: 10.1038/emboj.2009.89. Epub 2009 Apr 9.
10
Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase.米罗GTP酶对线粒体动力学的双向钙离子依赖性调控
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20728-33. doi: 10.1073/pnas.0808953105. Epub 2008 Dec 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验