Suppr超能文献

用于椎间盘组织工程的机械设计标准。

Mechanical design criteria for intervertebral disc tissue engineering.

机构信息

McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104, USA.

出版信息

J Biomech. 2010 Apr 19;43(6):1017-30. doi: 10.1016/j.jbiomech.2009.12.001. Epub 2010 Jan 18.

Abstract

Due to the inability of current clinical practices to restore function to degenerated intervertebral discs, the arena of disc tissue engineering has received substantial attention in recent years. Despite tremendous growth and progress in this field, translation to clinical implementation has been hindered by a lack of well-defined functional benchmarks. Because successful replacement of the disc is contingent upon replication of some or all of its complex mechanical behaviors, it is critically important that disc mechanics be well characterized in order to establish discrete functional goals for tissue engineering. In this review, the key functional signatures of the intervertebral disc are discussed and used to propose a series of native tissue benchmarks to guide the development of engineered replacement tissues. These benchmarks include measures of mechanical function under tensile, compressive, and shear deformations for the disc and its substructures. In some cases, important functional measures are identified that have yet to be measured in the native tissue. Ultimately, native tissue benchmark values are compared to measurements that have been made on engineered disc tissues, identifying where functional equivalence was achieved, and where there remain opportunities for advancement. Several excellent reviews exist regarding disc composition and structure, as well as recent tissue engineering strategies; therefore this review will remain focused on the functional aspects of disc tissue engineering.

摘要

由于目前的临床实践无法恢复退化的椎间盘的功能,近年来椎间盘组织工程领域受到了广泛关注。尽管该领域取得了巨大的发展和进步,但由于缺乏明确的功能基准,其向临床应用的转化受到了阻碍。由于成功替换椎间盘取决于复制其某些或全部复杂的机械行为,因此为了确定组织工程的离散功能目标,对椎间盘力学进行很好的描述是至关重要的。在这篇综述中,讨论了椎间盘的关键功能特征,并将其用于提出一系列天然组织基准,以指导工程化替代组织的开发。这些基准包括对椎间盘及其子结构在拉伸、压缩和剪切变形下的力学功能的测量。在某些情况下,确定了一些重要的功能测量值,这些值尚未在天然组织中进行测量。最终,将天然组织基准值与已在工程化椎间盘组织上进行的测量值进行比较,确定实现功能等效的地方,以及仍有改进空间的地方。关于椎间盘的组成和结构以及最近的组织工程策略已经有一些很好的综述,因此,本综述将继续集中讨论椎间盘组织工程的功能方面。

相似文献

1
Mechanical design criteria for intervertebral disc tissue engineering.
J Biomech. 2010 Apr 19;43(6):1017-30. doi: 10.1016/j.jbiomech.2009.12.001. Epub 2010 Jan 18.
2
Engineered disc-like angle-ply structures for intervertebral disc replacement.
Spine (Phila Pa 1976). 2010 Apr 15;35(8):867-73. doi: 10.1097/BRS.0b013e3181d74414.
3
A Structurally and Functionally Biomimetic Biphasic Scaffold for Intervertebral Disc Tissue Engineering.
PLoS One. 2015 Jun 26;10(6):e0131827. doi: 10.1371/journal.pone.0131827. eCollection 2015.
4
The challenge and advancement of annulus fibrosus tissue engineering.
Eur Spine J. 2013 May;22(5):1090-100. doi: 10.1007/s00586-013-2663-2. Epub 2013 Jan 30.
5
[Regeneration strategies of intervertebral disc].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2013 Feb;27(2):227-32.
8
Long-term mechanical function and integration of an implanted tissue-engineered intervertebral disc.
Sci Transl Med. 2018 Nov 21;10(468). doi: 10.1126/scitranslmed.aau0670.
10

引用本文的文献

1
Exploring bioadhesion: insight on innovative strategies to investigate bioadhesive scaffolds.
Int J Pharm X. 2025 Jul 15;10:100359. doi: 10.1016/j.ijpx.2025.100359. eCollection 2025 Dec.
3
Harnessing CRISPR potential for intervertebral disc regeneration strategies.
Front Bioeng Biotechnol. 2025 May 8;13:1562412. doi: 10.3389/fbioe.2025.1562412. eCollection 2025.
4
Multiscale mechanical-adapted hydrogels for the repair of intervertebral disc degeneration.
Bioact Mater. 2025 Feb 20;48:336-352. doi: 10.1016/j.bioactmat.2025.02.021. eCollection 2025 Jun.
5
Quasi-static and dynamic mechanical properties of a linoleic acid-modified, low-modulus bone cement for spinal applications.
Open Res Eur. 2024 May 21;3:203. doi: 10.12688/openreseurope.16683.2. eCollection 2023.
8
Characterization and modulation of the pro-inflammatory effects of immune cells in the canine intervertebral disk.
JOR Spine. 2024 Apr 23;7(2):e1333. doi: 10.1002/jsp2.1333. eCollection 2024 Jun.
9
Cryogelation reactions and cryogels: principles and challenges.
Turk J Chem. 2023 Jun 10;47(5):910-926. doi: 10.55730/1300-0527.3586. eCollection 2023.

本文引用的文献

1
Engineered disc-like angle-ply structures for intervertebral disc replacement.
Spine (Phila Pa 1976). 2010 Apr 15;35(8):867-73. doi: 10.1097/BRS.0b013e3181d74414.
2
Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration.
J Biomech Eng. 2009 Nov;131(11):111007. doi: 10.1115/1.3212104.
3
Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus.
Nat Mater. 2009 Dec;8(12):986-92. doi: 10.1038/nmat2558. Epub 2009 Oct 25.
5
Nucleus pulposus tissue engineering: a brief review.
Eur Spine J. 2009 Nov;18(11):1564-72. doi: 10.1007/s00586-009-1092-8. Epub 2009 Jul 15.
6
Biomimetic stratified scaffold design for ligament-to-bone interface tissue engineering.
Comb Chem High Throughput Screen. 2009 Jul;12(6):589-97. doi: 10.2174/138620709788681925.
7
Characterization of novel photocrosslinked carboxymethylcellulose hydrogels for encapsulation of nucleus pulposus cells.
Acta Biomater. 2010 Jan;6(1):179-86. doi: 10.1016/j.actbio.2009.06.004. Epub 2009 Jun 6.
8
Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo.
Osteoarthritis Cartilage. 2009 Oct;17(10):1377-84. doi: 10.1016/j.joca.2009.04.012. Epub 2009 May 4.
9
Degenerative anular changes induced by puncture are associated with insufficiency of disc biomechanical function.
Spine (Phila Pa 1976). 2009 May 1;34(10):998-1005. doi: 10.1097/BRS.0b013e31819c09c4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验