Fidai Alikhan B, Kim Byumsu, Lintz Marianne, Kirnaz Sertac, Gadjradj Pravesh, Boadi Blake I, Koga Maho, Hussain Ibrahim, Härtl Roger, Bonassar Lawrence J
Meinig School of Biomedical Engineering Cornell University Ithaca New York USA.
Sibley School of Mechanical and Aerospace Engineering Cornell University Ithaca New York USA.
JOR Spine. 2024 Aug 5;7(3):e1363. doi: 10.1002/jsp2.1363. eCollection 2024 Sep.
Mechanical augmentation upon implantation is essential for the long-term success of tissue-engineered intervertebral discs (TE-IVDs). Previous studies utilized stiffer materials to fabricate TE-IVD support structures. However, these materials undergo various failure modes in the mechanically challenging IVD microenvironment. FlexiFil (FPLA) is an elastomeric 3D printing filament that is amenable to the fabrication of support structures. However, no present study has evaluated the efficacy of a flexible support material to preserve disc height and support the formation of hydrated tissues in a large animal model.
We leveraged results from our previously developed FE model of the minipig spine to design and test TE-IVD support cages comprised of FPLA and PLA. Specifically, we performed indentation to assess implant mechanical response and scanning electron microscopy to visualize microscale damage. We then implanted FPLA and PLA support cages for 6 weeks in the minipig cervical spine and monitored disc height via weekly x-rays. TE-IVDs cultured in FPLA were also implanted for 6 weeks with weekly x-rays and terminal T2 MRIs to quantify tissue hydration at study endpoint.
Results demonstrated that FPLA cages withstood nearly twice the deformation of PLA without detrimental changes in mechanical performance and minimal damage. In vivo, FPLA cages and stably implanted TE-IVDs restored native disc height and supported the formation of hydrated tissues in the minipig spine. Displaced TE-IVDs yielded disc heights that were superior to PLA or discectomy-treated levels.
FPLA holds great promise as a flexible and bioresorbable material for enhancing the long-term success of TE-IVD implants.
植入时的机械增强对于组织工程化椎间盘(TE-IVD)的长期成功至关重要。先前的研究使用更硬的材料来制造TE-IVD支撑结构。然而,这些材料在机械挑战性的椎间盘微环境中会经历各种失效模式。FlexiFil(FPLA)是一种弹性体3D打印细丝,适用于制造支撑结构。然而,目前尚无研究评估柔性支撑材料在大型动物模型中保持椎间盘高度和支持水合组织形成的功效。
我们利用先前开发的小型猪脊柱有限元模型的结果来设计和测试由FPLA和PLA组成的TE-IVD支撑笼。具体而言,我们进行压痕试验以评估植入物的机械响应,并使用扫描电子显微镜观察微观损伤。然后,我们将FPLA和PLA支撑笼植入小型猪颈椎6周,并通过每周的X射线监测椎间盘高度。在FPLA中培养的TE-IVD也植入6周,每周进行X射线检查,并在研究终点进行T2加权磁共振成像以量化组织水合作用。
结果表明,FPLA笼承受的变形几乎是PLA的两倍,而机械性能没有不利变化,损伤最小。在体内,FPLA笼和稳定植入的TE-IVD恢复了天然椎间盘高度,并支持小型猪脊柱中水合组织的形成。移位的TE-IVD产生的椎间盘高度优于PLA或椎间盘切除治疗的水平。
FPLA作为一种灵活且可生物吸收的材料,在提高TE-IVD植入物的长期成功率方面具有巨大潜力。