Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, England.
Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):657-62. doi: 10.1073/pnas.0909033107. Epub 2009 Dec 22.
Enzymatic catalysis of oxygenation reactions in the absence of metal or organic cofactors is a considerable biochemical challenge. The CO-forming 1-H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) from Arthrobacter nitroguajacolicus Rü61a and 1-H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase (QDO) from Pseudomonas putida 33/1 are homologous cofactor-independent dioxygenases involved in the breakdown of N-heteroaromatic compounds. To date, they are the only dioxygenases suggested to belong to the alpha/beta-hydrolase fold superfamily. Members of this family typically catalyze hydrolytic processes rather than oxygenation reactions. We present here the crystal structures of both HOD and QDO in their native state as well as the structure of HOD in complex with its natural 1-H-3-hydroxy-4-oxoquinaldine substrate, its N-acetylanthranilate reaction product, and chloride as dioxygen mimic. HOD and QDO are structurally very similar. They possess a classical alpha/beta-hydrolase fold core domain additionally equipped with a cap domain. Organic substrates bind in a preorganized active site with an orientation ideally suited for selective deprotonation of their hydroxyl group by a His/Asp charge-relay system affording the generation of electron-donating species. The "oxyanion hole" of the alpha/beta-hydrolase fold, typically employed to stabilize the tetrahedral intermediate in ester hydrolysis reactions, is utilized here to host and control oxygen chemistry, which is proposed to involve a peroxide anion intermediate. Product release by proton back transfer from the catalytic histidine is driven by minimization of intramolecular charge repulsion. Structural and kinetic data suggest a nonnucleophilic general-base mechanism. Our analysis provides a framework to explain cofactor-independent dioxygenation within a protein architecture generally employed to catalyze hydrolytic reactions.
在没有金属或有机辅因子的情况下进行氧合反应的酶催化是一个相当大的生化挑战。来自节杆菌 nitroguajacolicus Rü61a 的 CO 形成 1-H-3-羟基-4-氧代喹啉二加氧酶(HOD)和来自恶臭假单胞菌 33/1 的 1-H-3-羟基-4-氧代喹啉二加氧酶(QDO)是同源的无辅因子依赖性双加氧酶,参与 N-杂芳环化合物的分解。迄今为止,它们是唯一被认为属于α/β-水解酶折叠超家族的双加氧酶。该家族的成员通常催化水解过程而不是氧合反应。我们在此介绍了 HOD 和 QDO 在其天然状态下的晶体结构,以及 HOD 与天然 1-H-3-羟基-4-氧代喹啉底物、其 N-乙酰邻氨基苯甲酸反应产物和作为双氧模拟物的氯复合物的结构。HOD 和 QDO 在结构上非常相似。它们具有经典的α/β-水解酶折叠核心结构域,另外还配备有帽结构域。有机底物在预组织的活性位点中结合,其取向非常适合通过 His/Asp 电荷传递系统对其羟基进行选择性去质子化,从而生成供电子物质。α/β-水解酶折叠的“氧阴离子空穴”通常用于稳定酯水解反应中的四面体中间体,这里用于容纳和控制氧化学,这被认为涉及过氧阴离子中间体。通过从催化组氨酸质子回传来推动产物释放,通过最小化分子内电荷排斥来实现。结构和动力学数据表明非亲核广义碱机制。我们的分析提供了一个框架,用于解释在通常用于催化水解反应的蛋白质结构中进行无辅因子的双加氧作用。