Molecular Biology and Biochemistry Department, Wesleyan University, 205 Hall-Atwater Laboratories, Middletown, CT 06459, USA.
Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):680-5. doi: 10.1073/pnas.0908302107. Epub 2009 Dec 22.
The DNA mismatch repair system (MMR) identifies replication errors and damaged bases in DNA and functions to preserve genomic integrity. MutS performs the task of locating mismatched base pairs, loops and lesions and initiating MMR, and the fundamental question of how this protein targets specific sites in DNA is unresolved. To address this question, we examined the interactions between Saccharomyces cerevisiae Msh2-Msh6, a eukaryotic MutS homolog, and DNA in real time. The reaction kinetics reveal that Msh2-Msh6 binds a variety of sites at similarly fast rates (k (ON) approximately 10(7) M(-1) s(-1)), and its selectivity manifests in differential dissociation rates; e.g., the protein releases a 2-Aminopurine:T base pair approximately 90-fold faster than a G:T mismatch. On releasing the 2-Ap:T site, Msh2-Msh6 is able to move laterally on DNA to locate a nearby G:T site. The long-lived Msh2-Msh6.G:T complex triggers the next step in MMR--formation of an ATP-bound clamp--more effectively than the short-lived Msh2-Msh6.2-Ap:T complex. Mutation of Glu in the conserved Phe-X-Glu DNA binding motif stabilizes Msh2-Msh6(E339A).2-Ap:T complex, and the mutant can signal 2-Ap:T repair as effectively as wild-type Msh2-Msh6 signals G:T repair. These findings suggest a targeting mechanism whereby Msh2-Msh6 scans DNA, interrogating base pairs by transient contacts and pausing at potential target sites, and the longer the pause the greater the likelihood of MMR.
DNA 错配修复系统(MMR)识别 DNA 中的复制错误和受损碱基,并发挥作用以维护基因组的完整性。MutS 执行定位错配碱基对、环和损伤并启动 MMR 的任务,而该蛋白如何靶向特定的 DNA 位点的基本问题尚未解决。为了解决这个问题,我们实时研究了酿酒酵母 Msh2-Msh6(真核 MutS 同源物)与 DNA 之间的相互作用。反应动力学表明,Msh2-Msh6 以相似的快速速率(k (ON) 约为 10(7) M(-1) s(-1))结合各种位点,其选择性表现在不同的离解速率上;例如,该蛋白释放 2-氨基嘌呤:T 碱基对的速度比 G:T 错配快约 90 倍。在释放 2-Ap:T 位点后,Msh2-Msh6 能够在 DNA 上侧向移动以找到附近的 G:T 位点。长寿命的 Msh2-Msh6.G:T 复合物比短寿命的 Msh2-Msh6.2-Ap:T 复合物更有效地触发 MMR 的下一步——形成 ATP 结合的夹子。保守的 Phe-X-Glu DNA 结合基序中的Glu 突变稳定了 Msh2-Msh6(E339A).2-Ap:T 复合物,突变体可以像野生型 Msh2-Msh6 一样有效地发出 2-Ap:T 修复信号。这些发现表明了一种靶向机制,其中 Msh2-Msh6 扫描 DNA,通过短暂接触来检查碱基对,并在潜在的靶位点处暂停,暂停时间越长,发生 MMR 的可能性就越大。