Suppr超能文献

二阶概率影响假说证实。

Second-order probability affects hypothesis confirmation.

机构信息

Department of Cognitive Sciences and Education, University of Trento, Trento, Italy.

出版信息

Psychon Bull Rev. 2010 Feb;17(1):129-34. doi: 10.3758/PBR.17.1.129.

Abstract

Bayesian confirmation measures give numerical expression to the impact of evidence E on a hypothesis H. All measures proposed to date are formal-that is, functions of the probabilities Pr[see equation in text], Pr[see equation in text], Pr[see equation in text], Pr[see equation in text], and nothing more. Experiments reported in Tentori, Crupi, and Osherson (2007) suggest that human confirmation judgment is not formal, but this earlier work leaves open the possibility that formality holds relative to a given semantic domain. The present study discredits even this weaker version of formality by demonstrating the role in confirmation judgments of a probability distribution defined over the possible values of Pr[see equation in text], Pr[see equation in text], Pr[see equation in text], and Pr[see equation in text]-that is, a second-order probability. Specifically, when for each of the latter quantities a pointwise value is fixed with a maximal second-order probability, evidence impact is rated in accordance with formal and normatively credible confirmation measures; otherwise evidence impact is systematically judged as more moderate.

摘要

贝叶斯确认测度为证据 E 对假设 H 的影响提供了数值表达。迄今为止提出的所有测度都是形式的,即概率 Pr[见文本中的方程]、Pr[见文本中的方程]、Pr[见文本中的方程]、Pr[见文本中的方程]的函数,仅此而已。Tentori、Crupi 和 Osherson(2007)报告的实验表明,人类的确认判断不是形式的,但这项早期工作留下了一个可能性,即形式相对于给定的语义域是成立的。本研究通过证明在确认判断中起作用的是在 Pr[见文本中的方程]、Pr[见文本中的方程]、Pr[见文本中的方程]和 Pr[见文本中的方程]的可能值上定义的概率分布,甚至否定了这种较弱的形式性版本,也就是说,二阶概率。具体来说,当为后一个数量的每一个数量固定一个具有最大二阶概率的点值时,证据影响将根据形式和规范可信的确认测度进行评估;否则,证据影响将被系统地判断为更为适中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验