Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio 43210.
Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599.
J Biol Chem. 2010 Mar 26;285(13):9506-9515. doi: 10.1074/jbc.M109.017269. Epub 2010 Jan 17.
Osteoclasts use actin-rich attachment structures in place of focal adhesions for adherence to bone and non-bone substrates. On glass, osteoclasts generate podosomes, foot-like processes containing a core of F-actin and regulatory proteins that undergo high turnover. To facilitate bone resorption, osteoclasts generate an actin-rich sealing zone composed of densely packed podosome-like units. Patterning of both podosomes and sealing zones is dependent upon an intact microtubule system. A role for unconventional myosin X (Myo10), which can bind actin, microtubules, and integrins, was examined in osteoclasts. Immunolocalization showed Myo10 to be associated with the outer edges of immature podosome rings and sealing zones, suggesting a possible role in podosome and sealing zone positioning. Further, complexes containing both Myo10 and beta-tubulin were readily precipitated from osteoclasts lysates. RNAi-mediated suppression of Myo10 led to decreased cell and sealing zone perimeter, along with decreased motility and resorptive capacity. Further, siRNA-treated cells could not properly position podosomes following microtubule disruption. Osteoclasts overexpressing dominant negative Myo10 microtubule binding domains (MyTH4) showed a similar phenotype. Conversely, overexpression of full-length Myo10 led to increased formation of podosome belts along with larger sealing zones and enhanced bone resorptive capacity. These studies suggest that Myo10 plays a role in osteoclast attachment and podosome positioning by direct linkage of actin to the microtubule network.
破骨细胞利用富含肌动蛋白的附着结构代替黏着斑附着于骨骼和非骨骼基质。在玻璃上,破骨细胞形成足突,足突状突起包含一个 F-肌动蛋白核心和经历高周转率的调节蛋白。为了促进骨吸收,破骨细胞生成富含肌动蛋白的封闭区,由紧密堆积的足突样单位组成。足突和封闭区的形成模式都依赖于完整的微管系统。非典型肌球蛋白 X(Myo10)可以结合肌动蛋白、微管和整合素,其在破骨细胞中的作用被研究。免疫定位显示 Myo10 与未成熟足突环和封闭区的外边缘相关,提示其在足突和封闭区定位中可能发挥作用。此外,含有 Myo10 和β-微管蛋白的复合物可以从破骨细胞裂解物中轻易沉淀出来。Myo10 的 RNAi 介导抑制导致细胞和封闭区周长减少,同时运动性和吸收能力降低。此外,微管破坏后,用 siRNA 处理的细胞无法正确定位足突。过表达显性负性 Myo10 微管结合结构域(MyTH4)的破骨细胞显示出类似的表型。相反,全长 Myo10 的过表达导致足突带的形成增加,同时封闭区增大和骨吸收能力增强。这些研究表明,Myo10 通过肌动蛋白与微管网络的直接连接在破骨细胞附着和足突定位中发挥作用。