Suppr超能文献

肌球蛋白 X 通过衔接足突和微管调节破骨细胞封闭带的形成。

Myosin X regulates sealing zone patterning in osteoclasts through linkage of podosomes and microtubules.

机构信息

Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio 43210.

Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599.

出版信息

J Biol Chem. 2010 Mar 26;285(13):9506-9515. doi: 10.1074/jbc.M109.017269. Epub 2010 Jan 17.

Abstract

Osteoclasts use actin-rich attachment structures in place of focal adhesions for adherence to bone and non-bone substrates. On glass, osteoclasts generate podosomes, foot-like processes containing a core of F-actin and regulatory proteins that undergo high turnover. To facilitate bone resorption, osteoclasts generate an actin-rich sealing zone composed of densely packed podosome-like units. Patterning of both podosomes and sealing zones is dependent upon an intact microtubule system. A role for unconventional myosin X (Myo10), which can bind actin, microtubules, and integrins, was examined in osteoclasts. Immunolocalization showed Myo10 to be associated with the outer edges of immature podosome rings and sealing zones, suggesting a possible role in podosome and sealing zone positioning. Further, complexes containing both Myo10 and beta-tubulin were readily precipitated from osteoclasts lysates. RNAi-mediated suppression of Myo10 led to decreased cell and sealing zone perimeter, along with decreased motility and resorptive capacity. Further, siRNA-treated cells could not properly position podosomes following microtubule disruption. Osteoclasts overexpressing dominant negative Myo10 microtubule binding domains (MyTH4) showed a similar phenotype. Conversely, overexpression of full-length Myo10 led to increased formation of podosome belts along with larger sealing zones and enhanced bone resorptive capacity. These studies suggest that Myo10 plays a role in osteoclast attachment and podosome positioning by direct linkage of actin to the microtubule network.

摘要

破骨细胞利用富含肌动蛋白的附着结构代替黏着斑附着于骨骼和非骨骼基质。在玻璃上,破骨细胞形成足突,足突状突起包含一个 F-肌动蛋白核心和经历高周转率的调节蛋白。为了促进骨吸收,破骨细胞生成富含肌动蛋白的封闭区,由紧密堆积的足突样单位组成。足突和封闭区的形成模式都依赖于完整的微管系统。非典型肌球蛋白 X(Myo10)可以结合肌动蛋白、微管和整合素,其在破骨细胞中的作用被研究。免疫定位显示 Myo10 与未成熟足突环和封闭区的外边缘相关,提示其在足突和封闭区定位中可能发挥作用。此外,含有 Myo10 和β-微管蛋白的复合物可以从破骨细胞裂解物中轻易沉淀出来。Myo10 的 RNAi 介导抑制导致细胞和封闭区周长减少,同时运动性和吸收能力降低。此外,微管破坏后,用 siRNA 处理的细胞无法正确定位足突。过表达显性负性 Myo10 微管结合结构域(MyTH4)的破骨细胞显示出类似的表型。相反,全长 Myo10 的过表达导致足突带的形成增加,同时封闭区增大和骨吸收能力增强。这些研究表明,Myo10 通过肌动蛋白与微管网络的直接连接在破骨细胞附着和足突定位中发挥作用。

相似文献

1
Myosin X regulates sealing zone patterning in osteoclasts through linkage of podosomes and microtubules.
J Biol Chem. 2010 Mar 26;285(13):9506-9515. doi: 10.1074/jbc.M109.017269. Epub 2010 Jan 17.
2
The RhoGAP activity of myosin IXB is critical for osteoclast podosome patterning, motility, and resorptive capacity.
PLoS One. 2014 Jan 23;9(1):e87402. doi: 10.1371/journal.pone.0087402. eCollection 2014.
3
Podosome and sealing zone: specificity of the osteoclast model.
Eur J Cell Biol. 2006 Apr;85(3-4):195-202. doi: 10.1016/j.ejcb.2005.09.008. Epub 2005 Oct 24.
7
The Sealing Zone in Osteoclasts: A Self-Organized Structure on the Bone.
Int J Mol Sci. 2018 Mar 26;19(4):984. doi: 10.3390/ijms19040984.
8
Podosome organization drives osteoclast-mediated bone resorption.
Cell Adh Migr. 2014;8(3):191-204. doi: 10.4161/cam.27840.
10
The F-actin modulator SWAP-70 controls podosome patterning in osteoclasts.
Bone Rep. 2016 Jul 19;5:214-221. doi: 10.1016/j.bonr.2016.07.002. eCollection 2016 Dec.

引用本文的文献

2
The role of tunneling nanotubes during early stages of HIV infection and reactivation: implications in HIV cure.
NeuroImmune Pharm Ther. 2023 Jan 4;2(2):169-186. doi: 10.1515/nipt-2022-0015. eCollection 2023 Jun.
3
Super-resolution microscopy reveals nanoscale architecture and regulation of podosome clusters in primary macrophages.
iScience. 2022 Nov 5;25(12):105514. doi: 10.1016/j.isci.2022.105514. eCollection 2022 Dec 22.
4
Proteomics Profiling of Osteoporosis and Osteopenia Patients and Associated Network Analysis.
Int J Mol Sci. 2022 Sep 5;23(17):10200. doi: 10.3390/ijms231710200.
5
The Effects of Mechanical Stretch on Integrins and Filopodial-Associated Proteins in Normal and Glaucomatous Trabecular Meshwork Cells.
Front Cell Dev Biol. 2022 Apr 29;10:886706. doi: 10.3389/fcell.2022.886706. eCollection 2022.
6
The dynactin subunit DCTN1 controls osteoclastogenesis via the Cdc42/PAK2 pathway.
Exp Mol Med. 2020 Mar;52(3):514-528. doi: 10.1038/s12276-020-0406-0. Epub 2020 Mar 24.
7
Phenotypic and Functional Alterations in Tunneling Nanotubes Formed by Glaucomatous Trabecular Meshwork Cells.
Invest Ophthalmol Vis Sci. 2019 Nov 1;60(14):4583-4595. doi: 10.1167/iovs.19-28084.
8
Myeloid Krüppel-Like Factor 2 Critically Regulates K/BxN Serum-Induced Arthritis.
Cells. 2019 Aug 16;8(8):908. doi: 10.3390/cells8080908.
9
Myosin-X Silencing in the Trabecular Meshwork Suggests a Role for Tunneling Nanotubes in Outflow Regulation.
Invest Ophthalmol Vis Sci. 2019 Feb 1;60(2):843-851. doi: 10.1167/iovs.18-26055.
10
Lack of Myosin X Enhances Osteoclastogenesis and Increases Cell Surface Unc5b in Osteoclast-Lineage Cells.
J Bone Miner Res. 2019 May;34(5):939-954. doi: 10.1002/jbmr.3667. Epub 2019 Feb 19.

本文引用的文献

1
Regulated proteolysis of nonmuscle myosin IIA stimulates osteoclast fusion.
J Biol Chem. 2009 May 1;284(18):12266-75. doi: 10.1074/jbc.M808621200. Epub 2009 Mar 5.
2
High molecular weight tropomyosins regulate osteoclast cytoskeletal morphology.
Bone. 2008 Nov;43(5):951-60. doi: 10.1016/j.bone.2008.06.017. Epub 2008 Jul 12.
3
Myosin-10 and actin filaments are essential for mitotic spindle function.
J Cell Biol. 2008 Jul 14;182(1):77-88. doi: 10.1083/jcb.200804062. Epub 2008 Jul 7.
4
Calmodulin-like protein enhances myosin-10 translation.
Biochem Biophys Res Commun. 2008 May 2;369(2):654-9. doi: 10.1016/j.bbrc.2008.02.056. Epub 2008 Feb 22.
5
Sequential roles for myosin-X in BMP6-dependent filopodial extension, migration, and activation of BMP receptors.
J Cell Biol. 2007 Dec 31;179(7):1569-82. doi: 10.1083/jcb.200704010. Epub 2007 Dec 24.
6
Tropomyosin 4 regulates adhesion structures and resorptive capacity in osteoclasts.
Exp Cell Res. 2008 Feb 1;314(3):564-73. doi: 10.1016/j.yexcr.2007.10.018. Epub 2007 Nov 1.
8
Integrin-mediated adhesion orients the spindle parallel to the substratum in an EB1- and myosin X-dependent manner.
EMBO J. 2007 Mar 21;26(6):1487-98. doi: 10.1038/sj.emboj.7601599. Epub 2007 Feb 22.
10
Myosin X regulates netrin receptors and functions in axonal path-finding.
Nat Cell Biol. 2007 Feb;9(2):184-92. doi: 10.1038/ncb1535. Epub 2007 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验