Institute of Systems and Robotics, University of Coimbra, Pinhal de Marrocos, Polo 2, 3030 Coimbra, Portugal.
Opt Lett. 2010 Jan 15;35(2):100-2. doi: 10.1364/OL.35.000100.
We address the problem of determining the reflection point on a specular surface where a light ray that travels from a source to a target is reflected. The specular surfaces considered are those expressed by a quadratic equation. So far, there is no closed form explicit equation for the general solution of this determination of the reflection point, and the usual approach is to use the Snell law or the Fermat principle whose equations are derived in multidimensional nonlinear minimizations. We prove in this Letter that one can impose a set of three restrictions to the reflection point that can impose a set of three restrictions that culminates in a very elegant formalism of searching the reflection point in a unidimensional curve in space. This curve is the intersection of two quadratic equations. Some applications of this framework are also discussed.
我们解决了确定光线从光源传播到目标并在镜面反射的反射点的问题。所考虑的镜面是由二次方程表示的。到目前为止,还没有用于确定反射点的一般解的封闭形式显式方程,通常的方法是使用斯涅尔定律或费马原理,其方程是在多维非线性最小化中推导出来的。在这封信中,我们证明可以对反射点施加一组三个约束,这组三个约束最终导致在空间中的一维曲线上搜索反射点的非常优雅的形式主义。这条曲线是两个二次方程的交点。还讨论了该框架的一些应用。